Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2311406, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811026

ABSTRACT

Amorphous alloys, also known as metallic glasses, exhibit many advanced mechanical, physical, and chemical properties. Owing to the nonequilibrium nature, their energy states can vary over a wide range. However, the energy relaxation kinetics are very complex and composed of various types that are coupled with each other. This makes it challenging to control the energy state precisely and to study the energy-properties relationship. This brief review introduces the recent progresses on studying the enthalpy relaxation kinetics during isothermal annealing, for example, the observation of two-step relaxation phenomenon, the detection of relaxation unit (relaxun), the key role of large activation entropy in triggering memory effect, the influence of glass energy state on nanocrystallization. Based on the above knowledge, a new strategy is proposed to design a series of amorphous alloys and their composites consisting of nanocrystals and glass matrix with superior functional properties by precisely controlling the nonequilibrium energy states. As the typical examples, Fe-based amorphous alloys with both advanced soft magnetism and good plasticity, Gd-based amorphous/nanocrystalline composites with large magnetocaloric effect, and Fe-based amorphous alloys with high catalytic performance are specifically described.

2.
Micromachines (Basel) ; 15(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542622

ABSTRACT

Amorphous alloy (AA) is a high-performance metal material generally with significantly excellent mechanical and corrosion resistance properties and thus is considered as a desirable material selection for micro-scale articles. However, the microfabrication of AA still faces a variety of technical challenges mainly because the materials are too hard to process and easily lose their original properties, although at moderately high temperatures. In this study, jet-electrolyte electrochemical machining (Jet-ECM) was proposed to microfabricate the Zr-based AA because it is a low-temperature material-removal process based on the anode dissolution mechanism. The electrochemical dissolution characteristics and material removal mechanism of AA were investigated, and then the optimal process parameters were achieved based on the evaluation of the surface morphologies, surface roughness, geometrical profile, and machining accuracy of the machined micro-dimples. Finally, the feasibility was further studied by using Jet-ECM to fabricate arrayed micro-dimples using the optimized parameters. It was found that Jet-ECM can successfully microfabricate mirror-like surface AA arrayed precision micro-dimples with significantly high dimensional accuracy and geometrical consistency. Jet-ECM is a promisingly advantageous microfabrication process for the hard-to-machine AA.

3.
Materials (Basel) ; 16(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895612

ABSTRACT

The effect of the Cr element on the corrosion behavior of as-spun Fe72-xCrxB19.2Si4.8Nb4 ribbons with x = 0, 7.2, 21.6, and 36 in 3.5% NaCl solution were investigated in this work. The results show that the glass formability of the alloys can be increased as Cr content (cCr) is added up to 21.6 at.%. When cCr reaches 36 at.%, some nanocrystals appear in the as-spun ribbon. With increasing cCr content, the corrosion resistances of as-spun Fe-based ribbons are continually improved as well as their hardness properties; during the polarization test, their passive film shows an increase first and then a decrease, with the highest pitting potential as cCr = 7.2 at.%, which is confirmed by an XPS test. The dense passivation film, composed of Cr2O3 and [CrOx(OH)3-2x, nH2O], can reduce the number of corrosion pits on the sample surface due to chloride corrosion and possibly be deteriorated by the overdosed CrFeB phase. This work can help us to design and prepare the highly corrosion-resistant Fe-based alloys.

4.
Nanomaterials (Basel) ; 13(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630863

ABSTRACT

Co-Zr amorphous alloys exhibit soft magnetic properties, whereas the Co-rich crystalline magnetic phases in this alloy system displayed a hard magnetic behavior. In this study, an initial two-phase Co-Zr composite with an overall composition of 75 at.% Co and 25 at.% Zr was processed by high-pressure torsion (HPT), and the effects of severe plastic deformation and subsequent thermal treatment on the composite's structural evolution and its magnetic properties were investigated. HPT processing allowed us to achieve an amorphous microstructure with low coercivity in its as-deformed state. To further tune the alloy's magnetic properties and study its crystallization behavior, various annealed states were investigated. The microstructural properties were correlated with the magnetic properties, and a decreasing coercivity with increasing annealing temperatures was observed despite the onset of crystallization in the amorphous alloy. At higher annealing temperatures, coercivity increased again. The results appear promising for obtaining tuneable rare-earth free magnetic materials by severe plastic deformation.

5.
Materials (Basel) ; 16(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444942

ABSTRACT

In this article, a high-performance nanostructured substrate has been fabricated for the ultrasensitive detection of the organic pollutant, Malachite green isothiocyanate (MGITC), in aquatic systems via the Surface Enhanced Raman Spectroscopy (SERS) technique. The chemical dealloying approach has been used to synthesize a three-dimensional nanoporous gold substrate (NPG) consisting of pores and multigrained ligament structures along thickness. The formation of the framework in NPG-5h has been confirmed by SEM with an average ligament size of 65 nm at the narrower neck. Remarkable SERS performance has been achieved by utilizing the NPG-5h substrate for the detection of MGITC, showing a signal enhancement of 7.9 × 109. The SERS substrate also demonstrated an impressively low-detection limit of 10-16 M. The presence of numerous active sites, as well as plasmonic hotspots on the nanoporous surface, can be accredited to the signal amplification via the Localized Surface Plasmon Resonance (LSPR) phenomenon. As a result, SERS detection technology with the fabricated-NPG substrate not only proves to be a simple and effective approach for detecting malachite green but also provides a basis for in situ detection approach of toxic chemicals in aquatic ecosystems.

6.
Materials (Basel) ; 16(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512265

ABSTRACT

Understanding the correlation between magnetomechanical coupling factors (k) and damping factors (Q-1) is a key pathway toward enhancing the magnetomechanical power conversion efficiency in laminated magnetoelectric (ME) composites by manipulating the magnetic and mechanical properties of Fe-based amorphous metals through engineering. The k and Q-1 factors of FeSiB amorphous ribbons annealed in air at different temperatures are investigated. It is found that k and Q-1 factors are affected by both magnetic and elastic properties. The magnetic and elastic properties are characterized in terms of the magnetomechanical power efficiency for low-temperature annealing. The k and Q-1 of FeSiB-based epoxied laminates with different stacking numbers show that a -3 dB bandwidth and Young's modulus are expressed in terms of the magnetomechanical power efficiency for high lamination stacking.

7.
Materials (Basel) ; 16(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37241256

ABSTRACT

Gd54Fe36B10-xSix (x = 0, 2, 5, 8, 10) amorphous ribbons were fabricated by melt-spinning technique. Based on the molecular field theory, the magnetic exchange interaction was analyzed by constructing the two-sublattice model and deriving the exchange constants JGdGd, JGdFe and JFeFe. It was revealed that appropriate substitution content of Si for B can improve the thermal stability, maximum magnetic entropy change and widened table-like magnetocaloric effect of the alloys, while excessive Si will lead to the split of the crystallization exothermal peak, inflection-like magnetic transition and deterioration of magnetocaloric properties. These phenomena are probably correlated to the stronger atomic interaction of Fe-Si than that of Fe-B, which induced the compositional fluctuation or localized heterogeneity and then caused the different way of electron transfer and nonlinear variation in magnetic exchange constants, magnetic transition behavior and magnetocaloric performance. This work analyzes the effect of exchange interaction on magnetocaloric properties of Gd-TM amorphous alloys in detail.

8.
J Phys Condens Matter ; 35(29)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37068489

ABSTRACT

Density of Al-Ni-Co-R (R = Nd, Sm, Gd, Tb, Yb) glass-forming alloys is studied experimentally by gamma-absorption method in a wide temperature range including crystalline and liquid states. Molar volumes and thermal expansion coefficients are calculated from the experimental data. It is shown that these melts remain strongly microheterogeneous systems at small overheatings above liquidus. Some regimes of melt heat treatment before quenching are discussed.

9.
Materials (Basel) ; 16(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36837116

ABSTRACT

Photoemission spectroscopy (PES) is an underrepresented part of current and past studies of compositionally complex alloys (CCA) such as high-entropy alloys (HEA) and their derivatives. PES studies are very important for understanding the electronic structure of materials, and are therefore essential in some cases for a correct description of the intrinsic properties of CCAs. Here, we present several examples showing the importance of PES. First, we show how the difference between the split-band structure and the common-band structure of the valence band (VB), observed by PES, can explain a range of properties of CCAs and alloys in general. A simple description of the band crossing in CCAs composed from the early and late transition metals showing a split band is discussed. We also demonstrate how a high-accuracy PES study can determine the variation in the density of states at the Fermi level as a function of Cu content in Ti-Zr-Nb-Ni-Cu metallic glasses. Finally, the first results of an attempt to single out the contributions of particular constituents in Cantor-type alloys to their VBs are presented. The basic principles of PES, the techniques employed in studies presented, and some issues associated with PES measurements are also described.

10.
Materials (Basel) ; 16(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36837341

ABSTRACT

We present a systematic study of electrical resistivity, superconductive transitions and the Hall effect for three systems of compositionally complex amorphous alloys of early (TE) and late (TL) transition metals: (TiZrNbNi)1-xCux and (TiZrNbCu)1-xCox in a broad composition range of 0

11.
Materials (Basel) ; 16(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36770265

ABSTRACT

The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on the structural properties of the two iron-based metallic glasses Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 have been investigated and compared. While for Fe73.9Cu1Nb3Si15.5B6.6, HPT processing allows us to extend the known consolidation and deformation ranges, HPT processing of Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time ever achieves consolidation and deformation with a minimum number of cracks. Using numerous analyses such as X-ray diffraction, dynamic mechanical analyses, and differential scanning calorimetry, as well as optical and transmission electron microscopy, clearly reveals that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibits HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 does not crystallize even at the highest HPT-deformation degrees applied. The reasons for these findings are discussed in terms of differences in the deformation energies expended, and the number and composition of the individual crystalline phases formed. The results appear promising for obtaining improved magnetic properties of glassy alloys without additional thermal treatment.

12.
Materials (Basel) ; 16(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36770327

ABSTRACT

X-ray diffraction and scanning electron microscopy were used to study changes in the structure of amorphous alloys under deformation by high-pressure torsion and multiple rolling. The change in mean nearest neighbor distance (the radius of the first coordination sphere) under deformation was determined. During deformation, shear bands are formed in amorphous alloys, which are regions of lower density compared to the surrounding undeformed amorphous matrix. Shear bands are zones of increased free volume, in which crystallization processes are facilitated. The change in the proportion of free volume under deformation of various types was estimated. The formation of shear bands leads to the appearance of steps on the surface of the samples. The number of shear bands and the surface morphology of deformed amorphous alloys were determined by the type of deformation and the physical properties of the material. The results obtained are discussed within the concept of free volume in the amorphous phase.

13.
Materials (Basel) ; 15(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36556820

ABSTRACT

In the present paper, the magnetization processes in amorphous alloys based on iron are discussed in detail. Our main goal was to measure the stabilization energy connected with the presence of microvoids (frozen during rapid cooling from the liquid phase) and to determine the interaction energy of relaxators with spontaneous magnetization vector (the so-called wN Neel) for amorphous Fe78Si13B9 alloys. A structural analysis of the alloys using X-ray measurements at the subsequent stages of crystallization was also performed.

14.
Materials (Basel) ; 15(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499911

ABSTRACT

In this work, the thermal behavior, soft magnetic properties, and structure of Fe86-xP11C2B1Wx (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, and 4) amorphous alloys were researched by several experimental methods and ab initio molecular dynamics. The addition of W improved the thermal stability of the alloy system when the first onset crystallization temperature (Tx1) increased from 655 K to 711 K, significantly reduced the coercivity Hc, and decreased the saturation magnetization Bs. The Fe85.6P11C2B1W0.4 alloy showed optimal soft magnetic performance, with low Hc of 1.4 A/m and relatively good Bs of 1.52 T. The simulation results suggested that W atoms increased the distance of the neighboring Fe-Fe pair, reduced the coordination number, narrowed the gap between the spin-up and spin-down electrons of each atom, and decreased the average magnetic moment of the Fe atoms. This work demonstrates a micro-alloying strategy to greatly reduce Hc while maintaining high Bs.

15.
Materials (Basel) ; 15(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35591353

ABSTRACT

Sn-Fe-Ni-Co quaternary alloys, in the composition range of 37-44 at% Sn, 35-39 at% Fe, 6-8 at% Ni and 13-17 at% Co, were prepared by direct current (DC) and pulse plating (PP) electrodeposition. The alloy deposits were characterized by XRD, 57Fe and 119Sn conversion electron Mössbauer spectroscopy, SEM-EDX and magnetization measurements. XRD revealed the amorphous character of the quaternary alloy deposits. The dominant ferromagnetic character of the deposits was shown by magnetization and Mössbauer spectroscopy measurements. Room temperature Mössbauer spectra showed minor paramagnetic phases, where their occurrences (~3-20%) are correlated to the electrodeposition parameters (Jdep from -16 to -23 mA/cm2 for DC, Jpulse from -40 to -75 mA/cm2 for PP), the composition and the saturation magnetization (~52-73 emu/g). A considerable difference was found in the magnetization curves applying parallel or perpendicular orientation of the applied fields, indicating magnetic anisotropy both in DC and pulse plated alloy coatings.

16.
Materials (Basel) ; 15(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35591483

ABSTRACT

Developing new soft magnetic amorphous alloys with a low cost and high saturation magnetization (Bs) in a simple alloy system has attracted substantial attention for industrialization and commercialization. Herein, the glass-forming ability (GFA), thermodynamic properties, soft magnetic properties, and atomic structures of Fe80+xSi5-xB15 (x = 0-4) amorphous soft magnetic alloys were investigated by ab initio molecular dynamics (AIMD) simulations and experiments. The pair distribution function (PDF), Voronoi polyhedron (VP), coordination number (CN), and chemical short- range order (CSRO) were analyzed based on the AIMD simulations for elucidating the correlations between the atomic structures with the glass-forming ability and magnetic properties. For the studied compositions, the Fe82Si3B15 amorphous alloy was found to exhibit the strongest solute-solute avoidance effect, the longest Fe-Fe bond, a relatively high partial CN for the Fe-Fe pair, and the most pronounced tendency to form more stable clusters. The simulation results indicated that Fe82Si3B15 was the optimum composition balancing the saturation magnetization and the GFA. This prediction was confirmed by experimental observations. The presented work provides a reference for synthesizing new Fe-Si-B magnetic amorphous alloys.

17.
Molecules ; 27(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35209209

ABSTRACT

Protective coatings for harsh environments are always welcome, but they must overcome profound challenges, including corrosion and wear resistance. The purpose of this study is to look into the long-term potentiodynamic polarization measurements and dry tribometric behavior of plasma-sprayed amorphous coatings on AISI 1035 mild steel. To investigate the impact of unique active polarization potentials on the electrochemical studies of the iron-based amorphous layer, which compares favorably to AISI 1035 mild steel, the active potential polarization curve and friction coefficient tests were performed. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analyses were used to investigate the coating's corrosion behavior. Their mechanical (Tribometric tests at higher sliding speeds) and chemical properties (electrochemical potentiodynamic polarization investigations) have also been thoroughly investigated. There is enough validation that these protective coatings can be used in hostile environments. The effects of long-term corrosion for 24 and 48 h were thoroughly examined. Tribometric examinations revealed that amorphous layers are highly resistant under dry conditions, as they offered a very low and stable friction coefficient less than 4 µ with micro Vickers hardness 1140 ± 22.14 HV, which is more than twice as compared to mild steel AISI 1035. The corrosion resistance of coatings in 3.5 wt % NaCl solution displays active transition characteristics of activation, passivation, over passivation, and pitting, as shown by the potentiodynamic polarization curves.

18.
Sensors (Basel) ; 23(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616897

ABSTRACT

Fe-based amorphous alloys have advantages of low iron loss and high effective permeability, which are widely used in sensors and actuators. Power efficiency is one of the most important indicators among power conversion applications. We compared the magnetomechancial power conversion factors of metallic glassy ribbons FeCoSiB (Vitrovac 7600) and FeSiB (Metglas 2605SA1). We investigated the crystallization process under different annealing temperatures and tested the magnetomechancial coupling factors (k) and quality factors (Q) by using resonant and anti-resonant methods. We found that the maximum coupling factor of the annealed Vitrovac ribbons was 23% and the figure of merits k2Q was 4-7; however, the maximum coupling factor of the annealed Metglas ribbons was 73% and the maximum value of k2Q was 16. We can observe that the Metglas 2605SA1 ribbons have higher values of the magnetomechanical power efficiency than those of the Vitrovac 7600 ribbons, which means they are better to be used in subsequent research regarding acoustically driven antennas.

19.
ACS Appl Mater Interfaces ; 13(49): 58682-58690, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34860485

ABSTRACT

A two-stage ball milling process was used to synthesize amorphous Ni79.2Nb12.5Y8.3 and Ni74.2Co5Nb12.5Y8.3 nanoparticles from elemental powders. The two-stage ball milling process provides a scalable and industrially applicable method for producing non-metalloid amorphous nanoparticles. The amorphous nanoparticles displayed excellent catalytic performance toward the oxygen evolution reaction (OER) in 1 M KOH, displaying lower overpotentials than IrO2 at 10 mA cm-2. The addition of Co in the amorphous alloy reduced the overpotential to 288 mV at 10 mA cm-2. The pairing of X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy revealed that the improved OER activity of amorphous Ni74.2Co5Nb12.5Y8.3 was attributed to the catalytic synergy between Y and Co. The integration of Y supported proton-coupled electron-transfer processes that assisted with the electrostatic adsorption of OH- and formation of oxyhydroxide species, while Co sites enabled metal-oxo bonding to prevent Ni overcharging and the stabilization of ß-NiOOH. The catalytic synergy between Y and Co reduces the amount of Co needed to enhance the OER activity of Ni-based alloys and lessens the dependence on Co, which is in high demand in many renewable energy and storage applications.

20.
Materials (Basel) ; 14(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34771807

ABSTRACT

The effects of the substitution of Fe by Co or Ni on both the structure and the magnetic properties of FeB amorphous alloy were investigated using first-principle molecular dynamics. The pair distribution function, Voronoi polyhedra, and density of states of Fe80-xTMxB20 (x = 0, 10, 20, 30, and 40 at.%, TM(Transition Metal): Co, Ni) amorphous alloys were calculated. The results show that with the increase in Co content, the saturation magnetization of Fe80-xCoxB20 (x = 0, 10, 20, 30, and 40 at.%) amorphous alloys initially increases and then decreases upon reaching the maximum at x = 10 at.%, while for Fe80-xNixB20 (x = 0, 10, 20, 30, and 40 at.%), the saturation magnetization decreases monotonously with the increase in Ni content. Accordingly, for the two kinds of amorphous alloys, the obtained simulation results on the variation trends of the saturation magnetization with the change in alloy composition are in good agreement with the experimental observation. Furthermore, the relative maximum magnetic moment was recorded for Fe70Co10B20 amorphous alloy, due to the induced increased magnetic moments of the Fe atoms surrounding the Co atom in the case of low Co dopant, as well as the increase in the exchange splitting energy caused by the enhancement of local atomic symmetry.

SELECTION OF CITATIONS
SEARCH DETAIL