Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.158
Filter
1.
Angew Chem Int Ed Engl ; : e202413698, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363762

ABSTRACT

Anion exchange membrane water electrolyzer (AEMWE) is a potentially cost-effective technology for green hydrogen production. Although the normal current densities of AEMWEs are below 3 A·cm-2, operating them at higher current densities represents an efficient, but little-explored approach to decrease the total cost of hydrogen production. We show here that a benchmark AEMWE has an operational lifetime of only seconds at an ultrahigh current density of 10 A·cm-2. By using a more conductive and robust AEM, and judicious choices of ionomers, catalyst, and porous transport layer, we have developed AEMWEs that stably operate at 10 A·cm-2 with extended lifetimes. The optimized AEMWE has an operational lifetime of more than 800 hours, a 5-order magnetite improvement over the current benchmark. The cell voltage is only 2.3 V at 10 A·cm-2, comparable to those of the state-of-the-art devices operating at current densities lower than 3 A·cm-2. This work demonstrates the potential of ultrahigh current density AEMWEs.

2.
Carbohydr Polym ; 344: 122541, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218558

ABSTRACT

The burgeoning requirement for purified biomacromolecules in biopharmaceutical industry has amplified the exigency for advanced chromatographic separation techniques. Herein, macroporous cellulose microspheres (CCMs) with micron-sized pores are produced by a facile regulation via carbon nanotubes (CNTs). In this strategy, the incorporation of CNTs breaks the homogeneous regeneration of the cellulose, thus providing anisotropic phase force to produce macropores. The CCMs have manifested a faster mass transfer rate and more available adsorption sites owing to well-defined macropores (2.69 ± 0.57 µm) and high specific surface area (147.47 m2 g-1). Further, CCMs are functionalized by quaternary ammonium salts (GTAc-CCMs) and utilized as anion adsorbents to adsorb pancreatic kininogenase (PK). The prepared GTAc-CCMs show rapid adsorption kinetics for PK at pH 6.0, reaching 90 % equilibrium within 60 min. Also, GTAc-CCMs for PK exhibit high adsorptive capacity (632.50 mg g-1), excellent recyclability (> 80 % removal amount after 10 cycles) and selectivity especially at pH 6.0. Notably, the GTAc-CCMs have been successfully applied in a fixed-bed chromatography process, indicating their potential as an effective chromatographic medium for rapid separation of biomacromolecules.


Subject(s)
Cellulose , Microspheres , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Adsorption , Cellulose/chemistry , Porosity , Kinetics , Quaternary Ammonium Compounds/chemistry , Hydrogen-Ion Concentration , Phase Separation
3.
Environ Sci Technol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223996

ABSTRACT

Bacterial contamination in drinking water is a global health concern, necessitating the development of highly efficient treatment techniques. Anion-exchange resins (AERs) have long been employed for removing anionic contaminants from drinking water, but their performance for bacterial contamination is poor. Here, we develop a novel AER (AER6-1) with exceptional bactericidal effects and ultrafast adsorption rates of extracellular DNA (eDNA) (2.2- and 11.5-fold compared to other AERs) achieved through preloading quaternary ammonium groups (QAGs) with hexyl chain (-C6-N+-) on the resin exterior and successively grafting QAGs with a methyl chain (-C1-N+-) inside a resin pore. The AER6-1 outperforms other commercial AERs and ultraviolet disinfection, exhibiting superior elimination of total bacteria, potential pathogens (Escherichia coli and Pseudomonas aeruginosa), eDNA, and antibiotic resistance genes (mexF, mexB, and bacA) in actual drinking water, while maintaining a comparable anion exchange capacity with other commercial AERs. Theoretical calculations of density functional theory and xDLVO combined with XPS elucidate the crucial roles of hydrogen bonding and hydrophobic force provided by the resin skeleton and -C6-N+- in cleaving the bacterial cell membrane and increasing the adsorption kinetics on eDNA. This study broadens the scope of AERs and highlights an effective way of simultaneously removing bacterial and anionic contaminants from drinking water.

4.
Small ; : e2404060, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235565

ABSTRACT

In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni3S2 via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe-Ni3S2 exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm-2 with an overpotential of 163 mV. In addition, Pt/C||Fe-Ni3S2 is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm-2 at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni3S2 by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe-Ni3S2 more favorable for the adsorption of OH- and the formation of *OO- intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.

5.
Eng Life Sci ; 24(9): e202400019, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233725

ABSTRACT

While bioactivity and a favorable safety profile for biotherapeutics is of utmost importance, manufacturability is also worth of consideration to ease the manufacturing process. Manufacturability in the scientific literature is mostly related to stability of formulated drug substances, with limited focus on downstream process-related manufacturability, that is, how easily can a protein be purified. Process-related impurities or biological impurities like viruses and host cell proteins (HCP) are present in the harvest which have mostly acid isoelectric points and need to be removed to ensure patient safety. Therefore, during molecule design, the surface charge of the target molecule should preferably differ sufficiently from the surface charge of the impurities to enable an efficient purification strategy. In this feasibility study, we evaluated the possibility of improving manufacturability by adapting the surface charge of the target protein. We generated several variants of a GLP1-receptor-agonist-Fc-domain-FGF21-fusion protein and demonstrated proof of concept exemplarily for an anion exchange chromatography step which then can be operated at high pH values with maximal product recovery allowing removal of HCP and viruses. Altering the surface charge distribution of biotherapeutic proteins can thus be useful allowing for an efficient manufacturing process for removing HCP and viruses, thereby reducing manufacturing costs.

6.
Small ; : e2405468, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263762

ABSTRACT

Anion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series. The study aims to explore the relationship between composition, degree of crystallinity, and electrocatalytic activity using ternary contours and binary plots to derive optimal catalysts. The findings reveal that higher Co and lower Fe contents lead to increased structural disorder within the Fe-Co-Ni system, whereas an appropriate amount of Fe addition is necessary for OER activity. It is concluded that the amorphous structure of Fe-Co3-Ni possesses an optimal ternary composition and degree of crystallinity to facilitate the OER. Post-OER analyses reveal that the optimized ternary amorphous structure induces structural reconstruction into an OER-favorable OOH-rich surface. The Fe-Co3-Ni electrocatalysts exhibit outstanding performances in both half-cells and single-cells, with an overpotential of 256 mV at 10 mA cm- 2 and a current density of 2.0 A cm- 2 at 1.89 V, respectively.

7.
Angew Chem Int Ed Engl ; : e202413916, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271461

ABSTRACT

Metal-Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure-activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe)-MOF structural evolution, accompanied by the elongation of Ni-O bonds, monitored by in-situ Raman and UV-visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-Op hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe)-MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3.3 A cm-2 at 2.2 V while maintaining equally stable operation for 160 h spanning from 0.5 A cm-2 to 1 A cm-2. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.

8.
J Chromatogr A ; 1735: 465309, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39241401

ABSTRACT

Owing to the on-going emission of Hg into the global environment, new insight into their bioinorganic chemistry in mammals is urgently required to better understand their adverse health effects and analytical methods to quantify Hg2+ and MeHg+ in environmental samples are needed. Analytical separations can help to address both of these needs. While Hg2+ and MeHg+ have been most frequently separated by cation and reversed-phase (RP) HPLC, we here report on using anion-exchange (AEX) HPLC in conjunction with a flame atomic absorption spectrometer (FAAS) to observe the retention behavior of these mercury species in the pH range 5.0-8.0 using mobile phases comprised of 10 mM l-cysteine (Cys) in 100 mM phosphate buffer. The results obtained for pH 5.0 served as a starting point to develop a rapid HPLC separation for these mercurials. The addition of 5-20 % methanol (MeOH) to this mobile phase revealed that MeOH did not appreciably change the retention of Hg2+, but significantly reduced the retention of MeHg+. A 15 % MeOH-containing mobile phase offered the best compromise between achieving a rapid baseline separation in <400 s at affordable costs. To assess the suitability and robustness of the developed AEX-HPLC separation method for the analysis of environmental samples an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed as the mercury-specific detector. The developed AEX-HPLC-ICP-AES method allowed to achieve detection limits of 1.5 ppm for Hg2+ and 2.9 ppm for MeHg+ and was successfully applied to analyze wastewater that had been spiked with Hg2+ and MeHg+.


Subject(s)
Cysteine , Mercury , Methylmercury Compounds , Chromatography, High Pressure Liquid/methods , Cysteine/chemistry , Mercury/analysis , Mercury/chemistry , Mercury/isolation & purification , Methylmercury Compounds/analysis , Methylmercury Compounds/isolation & purification , Chromatography, Ion Exchange/methods , Limit of Detection , Spectrophotometry, Atomic/methods , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
9.
J Pharm Biomed Anal ; 251: 116452, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39217700

ABSTRACT

Adeno-associated virus (AAV)-based gene therapy is experiencing a rapid growth in the field of medicine and holds great promise in combating a wide range of human diseases. For successful development of AAV-based products, comprehensive thermal stability studies are often required to establish storage conditions and shelf life. However, as a relatively new modality, limited studies have been reported to elucidate the chemical degradation pathways of AAV products under thermal stress conditions. In this study, we first presented an intriguing difference in charge profile shift between thermally stressed AAV8 and AAV1 capsids when analyzed by anion exchange chromatography. Subsequently, a novel and robust peptide mapping protocol was developed and applied to elucidate the underlying chemical degradation pathways of thermally stressed AAV8 and AAV1. Compared to the conventional therapeutic proteins, the unique structure of AAV capsids also led to some key differences in how modifications at specific sites may impact the overall charge properties. Finally, despite the high sequency identity, the analysis revealed that the opposite charge profile shifts between thermally stressed AAV8 and AAV1 could be mainly attributed to a single modification unique to each serotype.


Subject(s)
Dependovirus , Peptide Mapping , Dependovirus/genetics , Dependovirus/chemistry , Chromatography, Ion Exchange/methods , Peptide Mapping/methods , Capsid/chemistry , Hot Temperature , Humans , Capsid Proteins/chemistry , Genetic Vectors/chemistry , Genetic Therapy/methods , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
10.
Article in English | MEDLINE | ID: mdl-39303519

ABSTRACT

Lipid nanoparticles (LNPs) are emerging nucleic acid delivery systems in the development of mRNA therapeutics such as the severe acute respiratory syndrome coronavirus 2 vaccines. However, a suitable analytical method for evaluating the encapsulation efficiency (EE) of the LNPs is required to ensure drug efficacy, as current analytical methods exhibit throughput issues and require long analysis times. Hence, we developed and validated an anion-exchange HPLC method using Analytical Quality by Design. Three critical method parameters (CMPs) were identified using risk assessment and Design of Experiments: column temperature, flow rate, and sodium perchlorate concentration. The CMPs were optimized using Face-Centered Central Composite Design. The discriminating power of the optimized HPLC method and RiboGreen assay was comparable. The main advantage of this method is that LNPs can be directly injected into the HPLC system without bursting the LNPs loaded with encapsulated poly(A). The optimized HPLC method was validated as robust, high-throughput, and sufficiently sensitive according to the ICH Q2 guidelines. We believe our findings could promote efficient LNPs-based drug development.

11.
ACS Appl Mater Interfaces ; 16(38): 51660-51668, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39267578

ABSTRACT

Understanding the structure evolution, kinetics, and mass transfer for the oxygen reduction reaction (ORR) at the ionomer-catalyst interface is fundamental for the development of anion exchange membrane fuel cells (AEMFCs). Herein, we investigate the structural evolution of ionomer-Pt interfaces during the activation process of polycrystalline Pt (poly-Pt) electrodes and their ORR kinetics and mass transfer characteristics at steady state. The results suggest the ionomer thickness as a critical factor in determining the Pt surface structure and the flux of the O2 diffusion, which in turn affect the subsequent kinetic and mass transfer of the ORR on ionomer-Pt electrode interfaces. Thicker ionomer film leads to a more severe evolution of electrochemical features during the activation process, likely caused by forming more less-active Pt clusters at the ionomer-Pt interface. Thus, the ORR kinetic activity at the steady state decreases with the increase in ionomer thickness. Concurrently, the thicker ionomer leads to a reduced diffusion flux of O2, culminating in a lower limiting current density for the ORR. Additionally, we calculated the diffusion coefficient and solubility of O2 within the FAA-3 alkaline ionomer film, with a comparative assessment against those in the proton exchange membrane (PEM). These findings offer valuable insights into the ionomer-Pt interface in AEMFCs and their effects on performance.

12.
Article in English | MEDLINE | ID: mdl-39344264

ABSTRACT

Nonaqueous redox flow batteries often suffer from reduced battery lifetime and decreased coulombic efficiency due to crossover of the redox-active species through the membrane. One method to mitigate this undesired crossover is to judiciously choose a membrane based on several criteria: swelling and structural integrity, size and charge of redox active species, and ionic conductivity. Most research to date has focused on reducing crossover by synthesizing modified redox-active molecules and/or new membranes. However, no standard protocol exists to compare membranes and a comprehensive study comparing membranes has yet to be done. To address both these limitations, we evaluate herein 26 commercial anion exchange membranes (AEMs) to assess their compatibility with common nonaqueous solvents and their resistance to crossover by using neutral and cationic redox-active molecules. Ultimately, we found that all the evaluated AEMs perform poorly in organic solvents due to uncontrolled swelling, low ionic conductivity, and/or high crossover rates. We believe that this method, and the generated data, will be useful to evaluate and compare the performance of all AEMs─commercial and newly synthesized─and should be implemented as a standard protocol for future research.

13.
Nanomicro Lett ; 17(1): 11, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325091

ABSTRACT

Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm-2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.

14.
Biol Methods Protoc ; 9(1): bpae067, 2024.
Article in English | MEDLINE | ID: mdl-39346750

ABSTRACT

The elimination of brownish pigments from plant protein extracts has been a challenge in plant biochemistry studies. Although numerous approaches have been developed to reduce pigments for enzyme assays, none has been able to completely remove pigments from plant protein extracts for biochemical studies. A simple and effective protocol was developed to completely remove pigments from plant protein extracts. Proteins were extracted from red anthocyanin-rich transgenic and greenish wild-type tobacco cells cultured on agar-solidified Murashige and Skoog medium. Protein extracts from these cells were brownish or dark due to the pigments. Four approaches were comparatively tested to show that the diethylaminoethyl (DEAE)-Sephadex anion exchange gel column was effective in completely removing pigments to obtain transparent pigment-free protein extracts. A Millipore Amicon® Ultra 10K cut-off filter unit was used to effectively desalt proteins. Moreover, the removal of pigments significantly improved the measurement accuracy of total soluble proteins. Furthermore, enzymatic assays using catechol as a substrate coupled with high-performance liquid chromatography analysis demonstrated that the pigment-free proteins not only showed polyphenol oxidase (PPO) activity but also enhanced the catalytic activity of PPO. Taken together, this protocol is effective for extracting pigment-free plant proteins for plant biochemistry studies. A simple and effective protocol was successfully developed to not only completely and effectively remove anthocyanin and polyphenolics-derived quinone pigments from plant protein extracts but also to decrease the effects of pigments on the measurement accuracy of total soluble proteins. This robust protocol will enhance plant biochemical studies using pigment-free native proteins, which in turn increase their reliability and sensitivity.

15.
J Memb Sci ; 7112024 Nov.
Article in English | MEDLINE | ID: mdl-39345865

ABSTRACT

Economically valuable volatile fatty acids (VFAs) are sustainably produced via fermentation processes. To use VFAs downstream, they must be recovered using technologies like electrodialysis (ED). Solute transport properties (i.e., partition coefficient (K), diffusion coefficient (D), and permeability (P=KD)) govern flux in ED. Therefore, to advance understanding of VFA flux through anion exchange membranes (AEMs) in ED, we aimed to elucidate the relative contributions of VFA partitioning and mobility to their flux. Accordingly, for VFAs of different sizes (C1-C5) and inorganic anions (Cl-, Br-), we measured their fluxes during ED, permeabilities, and partition coefficients, and calculated the diffusion coefficients. We then evaluated the correlations between flux and transport properties and between transport properties and anion physicochemical properties. Results showed VFA flux had a strong correlation with permeability (R2=0.94, p<0.01), consistent with flux described by the Nernst-Planck equation. Further, while there was a negative correlation between VFA flux and partition coefficient (R2=0.46, p=0.21), there was a positive correlation between VFA flux and diffusion coefficient (R2=0.95, p<0.01) which showed VFA mobility governed VFA flux. We observed a negative correlation between VFA diffusion coefficient and carbon-chain length which was attributed to steric hindrance, and a positive correlation between partition coefficient and carbon chain-length which we attributed to hydrophobicity and polarizability. This work provides fundamental insight on interactions between VFAs and AEMs which affect anion flux during ED.

16.
Anal Sci ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143455

ABSTRACT

The separation and detection of six common inorganic anions (iodate (IO3-), bromate (BrO3-), bromide (Br-), nitrite (NO2-), nitrate (NO3-), and iodide (I-)) in pure water and 35 ‰ artificial seawater were examined by ion chromatography (IC). As packing materials of separation columns, 1-aminoundecyl group chemically bonded silica (AUS) gels were prepared. Separation of the anions in pure water was achieved using separation columns (150 mm × 4.6 mm i.d.) packed with the AUS gels, 0.1 M NaCl + 5 mM phosphate buffer (pH 4.5) as eluent, and a UV detector (wavelength 225 nm). The anions in artificial seawater were separated and detected with a 300 mm-long column without interferences by matrix anions such as chloride (Cl-) and sulfate (SO42-). The stationary phases have high-capacity anion-exchange/hydrophilic/hydrophobic interaction mixed-modes. The IC system was applied to five inorganic anions, IO3-, Br-, NO2-, NO3-, and I- in seawater of the Seto-Inland Sea, Japan. The detection limits (DLs, S/N = 3) were 11 µg L-1 (IO3-), 93 (Br-), 1.3 (NO2-), 1.4 (NO3-), and 1.1 (I-) for a 100-µL sample injection.

17.
ACS Nano ; 18(34): 22901-22916, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39137066

ABSTRACT

Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm-2, and they exhibit long-term stability at 1000 mA cm-2 over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 Vcell to achieve a current density of 1.0 A cm-2 in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.

18.
Polymers (Basel) ; 16(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39204600

ABSTRACT

Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.

19.
Methods Mol Biol ; 2843: 155-162, 2024.
Article in English | MEDLINE | ID: mdl-39141299

ABSTRACT

Bacterial extracellular vesicles (BEVs) have extraordinary biotechnological potential, but traditional purification methods lack desirable scalability and commonly co-isolate protein impurities, limiting clinical translation. Anion exchange chromatography (AEC) separates molecules based on differences in net charge and is widely used for industrial biomanufacturing of protein therapeutics. Recently, AEC has recently been applied for purification of EVs from both mammalian and bacterial sources. Since most bacteria produce BEVs with a negative surface membrane change, AEC can potentially be widely used for BEV purification. Here, we describe a method utilizing high-performance AEC (HPAEC) in tandem with size-based tangential flow filtration for improved BEV purification. We have previously found this method can reduce co-isolated protein impurities and potentiate anti-inflammatory bioactivity of probiotic BEVs. Thus, this method holds promise as a scalable alternative for improved BEV purification.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Chromatography, Ion Exchange/methods , Bacteria/metabolism , Anions/chemistry , Filtration/methods
20.
ACS Nano ; 18(33): 22334-22343, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39120711

ABSTRACT

This work reports the synthesis of chiral perovskite heterostructure films by combining a two-dimensional (2D) chiral (R-/S-MBA)2PbI4 perovskite with CsPbBr3 quantum dots (QDs). The as-synthesized chiral heterostructure films exhibit obvious circularly polarized luminescence (CPL) properties, even though pure 2D chiral perovskite cannot present photoluminescence. It indicates that the chirality of the excited state of the QDs originates from the 2D chiral perovskite. The circular polarization-resolved transient absorption (TA) spectra further demonstrate that the CPL response of heterostructure films originates from the energy transfer between the chiral perovskite layer and QDs layer and the suppression of spin relaxation, which induces the imbalance of the spin population of excited states in QDs layer. In addition, the photoluminescence (PL), circular dichroism (CD), and CPL spectra of these heterostructure films can be controlled by varying the thickness and component of the chiral perovskite layer, which demonstrates that the anion exchange between chiral perovskite and CsPbBr3 QDs can tune the chemical composition and optoelectronic properties due to the low bonding energy difference between them and decrease the strain within the QDs layer to reduce the radiative recombination lifetime. This work provides guidance for the synthesis of chiral perovskites with a strong CPL response and further provides insight into the origination of CPL.

SELECTION OF CITATIONS
SEARCH DETAIL