Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Front Immunol ; 14: 1271342, 2023.
Article in English | MEDLINE | ID: mdl-37965351

ABSTRACT

Background: IL-17 is a modulator of the inflammatory response and is implicated in lung remodeling in both asthma and chronic obstructive pulmonary disease (COPD). Well as and probably in patients with asthma-COPD overlap (ACO). Methods: In this study, we evaluated the response of the airways and alveolar septa to anti-IL-17 treatment in an ACO model. Fifty-six male BALB/c mice were sensitized with ovalbumin (OVA group), received porcine pancreatic elastase (PPE group), or both (ACO group). Mice were then treated with either anti-IL-17 monoclonal antibody or saline. We evaluated hyperresponsiveness, bronchoalveolar lavage fluid (BALF) cell counts, and mean alveolar diameter. We quantified inflammatory, response, extracellular matrix remodeling, oxidative stress markers, and signaling pathway markers. Results: Anti-IL-17 treatment in the ACO anti-IL-17 group reduced the maximum response of respiratory system Rrs, Ers, Raw, Gtis, this when compared to the ACO group (p<0.05). There was a reduction in the total number of inflammatory cells, neutrophils, and macrophages in the BALF in the ACO anti-IL-17 group compared to the ACO group (p<0.05). There was attenuated dendritic cells, CD4+, CD8+, FOXP3, IL-1ß, IL-2, IL-6, IL-13, IL-17, IL-33 in ACO anti-IL-17 group in airway and alveolar septum compared to the ACO group (p<0.05). We observed a reduction of MMP-9, MMP-12, TIMP-1, TGF-ß, collagen type I in ACO anti-IL-17 group in airway and alveolar septum compared to the ACO group (p < 0.05). We also observed a reduction of iNOS and 8-iso-PGF2α in the airways and in the alveolar septum was reduced in the ACO anti-IL-17group compared to the ACO group (p < 0.05). Regarding the signaling pathways, NF-kB, ROCK-1, and ROCK-2 in the airway and alveolar septum were attenuated in the ACO anti-IL-17 group when compared to the ACO group (p<0.05). Conclusions: Our results suggest that inhibiting IL-17 modulates cell-associated cytokine production in lung tissue, extracellular matrix remodeling, and oxidative stress in ACO through the modulation of NF-kB and FOXP3.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Animals , Male , Mice , Forkhead Transcription Factors , Interleukin-17 , NF-kappa B , Pulmonary Disease, Chronic Obstructive/drug therapy , Swine
2.
BMC Oral Health ; 21(1): 292, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103043

ABSTRACT

BACKGROUND: Secukinumab is a human monoclonal antibody immunoglobulin that neutralises interleukin (IL)-17A, and as such, is effective in the treatment of psoriasis. However, as IL-17A is essential in protection against fungal infections, patients treated with this drug may develop candidiasis. This report presents a case of atypical oral candidiasis occurring during targeted drug immunotherapy with an interleukin 17 (IL-17) inhibitor (secukinumab), with the aim of emphasisinge the necessity of periodical oral health assessment and monitoring. It provides a rational clinical approach to therapeutic protocol in the treatment of side effects associated with novel medications for autoimmune diseases. CASE PRESENTATION: Symptomatic tongue lesions were observed in a 50-year-old female patient on a monthly systemic treatment of 300 mg of secukinumab, which appeared after 60 days of using the medication. Two inconclusive biopsies and an unsuccessful application of oral corticosteroids made the diagnostic process challenging. Papillae on the back of the tongue were atrophied, forming a well-defined erythema and white non-detachable plaques on the lateral border of the tongue. Cytopathological and histopathological exam results were compatible with a diagnosis of oral candidiasis. Topical antifungal medication led to subsequent regression of the tongue lesions. During asymptomatic period and follow up for 7 months, a reduced monthly dose 150 mg of secukinumab was administered. CONCLUSIONS: Patients undergoing treatment with IL-17 blockers, such as secukinumab, should be carefully monitored in order to avoid oral side effects resulting from the use of this medication.


Subject(s)
Candidiasis, Oral , Psoriasis , Antibodies, Monoclonal, Humanized , Candidiasis, Oral/drug therapy , Female , Humans , Immunotherapy , Interleukin-17 , Middle Aged , Psoriasis/drug therapy
3.
Clinics ; Clinics;76: e3015, 2021. tab
Article in English | LILACS | ID: biblio-1339711

ABSTRACT

Monoclonal antibodies or fusion proteins, defined as biological drugs, have modified the natural history of numerous immune-mediated disorders, allowing the development of therapies aimed at blocking the pathophysiological pathways of the disease, providing greater efficacy and safety than conventional treatment strategies. Virtually all therapeutic proteins elicit an immune response, producing anti-drug antibodies (ADAs) against hypervariable regions of immunoglobulins. Immunogenicity against biological drugs can alter their pharmacokinetic and pharmacodynamic properties, thereby reducing the efficacy of these drugs. In more severe cases, ADAs can neutralize the therapeutic effects of the drug or cause serious adverse effects, mainly hypersensitivity reactions. The prevalence of ADAs varies widely depending on the type of test used, occurrence of false-negative results, and non-specific binding to the drug, making it difficult to accurately assess their clinical impact. Concomitant use of immunosuppressors efficiently reduces the immunogenicity in a dose-dependent manner, either by decreasing the frequency of detectable ADAs or by delaying their appearance, thereby enhancing the effectiveness of biological therapies. Among the new therapeutic strategies for the management of psoriasis, biological agents have gained increasing importance in recent years as they interrupt key inflammation pathways involved in the physiopathology of the disease. Reports regarding ADA in new biologics are still scarce, but the most recent evidence tends to show little impact on the clinical response to the drug, even with prolonged treatment. It is therefore essential to standardize laboratory tests to determine the presence and titles of ADAs to establish their administration and management guidelines that allow the determination of the real clinical impact of these drugs.


Subject(s)
Humans , Psoriasis/drug therapy , Biological Products/therapeutic use , Arthritis, Psoriatic/drug therapy , Antibodies, Monoclonal
4.
Front Pharmacol ; 11: 1269, 2020.
Article in English | MEDLINE | ID: mdl-33013361

ABSTRACT

INTRODUCTION: Although the major alterations associated with asthma are related to the airways, there is also evidence of the importance of peribronchial vascular inflammation and remodeling in its pathophysiology. OBJECTIVES: To determine the effects of anti-IL-17 therapy on peribronchial vessels of an asthma model exacerbated by lipopolysaccharide. METHODS: We evaluated several factors, including lung function, inflammation, oxidative stress, vascular remodeling, and signaling pathways present in the peribronchial vessels of 66 male BALB/c mice exposed to ovalbumin and treated (or not) treated with anti-IL-17. Twenty-four hours before the end of the experimental protocol, groups of sensitized animals (OVA-LPS and OVA-LPS anti-IL-17) also received LPS. RESULTS: The OVA-LPS-anti-IL-17 group presented a decrease in several factors [airway resistance and elastance, bronchoalveolar lavage fluid (BALF) cell counts, inflammatory response, eosinophils, TSLP, IL-33, TARC, TNF-α, CD4+, CD8+, IL-4, IL-6, IL-10, IL-17, and VEGF positive cells/104µm2, peribronchovascular edema, and angiogenesis], including remodeling (MMP-9, MMP-12, TIMP-1 and TGF-ß positive cells and volume fraction of collagen fibers I, collagen fibers III, collagen fibers V, decorin, lumican, actin, biglycan, fibronectin, and integrin), oxidative stress (iNOS positive cells and volume fraction of PGF2α), and signaling pathways (FoxP3), as well as dendritic cells, NF-kB, ROCK-1, ROCK-2, STAT-1, and phosphor-STAT1-positive cells compared to OVA-LPS (p < 0.05). CONCLUSIONS: In this model of LPS-induced asthma exacerbation, IL-17 inhibition represents a promising therapeutic strategy, indicating the potential of bronchial vascular control of Th2 and Th17 responses and the activation of the remodeling and oxidative stress pathways, associated with the control of signaling pathways.

5.
Front Immunol ; 8: 1835, 2017.
Article in English | MEDLINE | ID: mdl-29379497

ABSTRACT

Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-κB, and Rho kinase 1- and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.

SELECTION OF CITATIONS
SEARCH DETAIL