Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Semin Immunopathol ; 45(2): 253-264, 2023 03.
Article in English | MEDLINE | ID: mdl-36175673

ABSTRACT

The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Antigens, Neoplasm , Tumor Microenvironment , Neoplasms/therapy , Neoplasms/drug therapy , Immunotherapy , T-Lymphocytes, Regulatory
2.
Oncoimmunology ; 10(1): 1975889, 2021.
Article in English | MEDLINE | ID: mdl-38283034

ABSTRACT

Cells in the tumor microenvironment of Follicular lymphoma (FL) express checkpoint molecules such as programmed death ligands 1 and 2 (PD-L1 and PD-L2) and are suppressing anti-tumor immune activity. Stimulation of peripheral blood mononuclear cells (PBMC) with PD-L1 (IO103) or PD-L2 (IO120) peptides can activate specific T cells inducing anti-regulatory functions including cytotoxicity against PD-L1/PD-L2-expressing cells. In this study, we vaccinated eight FL patients with PD-L1 and PD-L2 peptides following treatment with standard chemotherapy. Patients experienced grade 1-2 injection site reaction (5/8) and mild flu-like symptoms (6/8). One patient experienced neutropenia and thrombocytopenia during pseudo-progression. Enzyme-linked immunospot detected vaccine-specific immune responses in PBMC from all patients, predominately toward PD-L1. The circulating immune composition was stable during treatment; however, we observed a reduction regulatory T cells, however, not significant. One patient achieved a complete remission during vaccination and two patients had pseudo-progression followed by long-term disease regression. Further examination of these early signs of clinical efficacy of the dual-epitope vaccine in a larger study is warranted.

3.
Oncoimmunology ; 9(1): 1771142, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32923127

ABSTRACT

One way that tumors evade immune destruction is through tumor and stromal cell expression of arginine-degrading enzyme arginase-2 (ARG2). Here we describe the existence of pro-inflammatory effector T-cells that recognize ARG2 and can directly target tumor and tumor-infiltrating cells. Using a library of 34 peptides covering the entire ARG2 sequence, we examined reactivity toward these peptides in peripheral blood mononuclear cells from cancer patients and healthy individuals. Interferon-γ ELISPOT revealed frequent immune responses against several of the peptides, indicating that ARG2-specific self-reactive T-cells are natural components of the human T-cell repertoire. Based on this, the most immunogenic ARG2 protein region was further characterized. By identifying conditions in the microenvironment that induce ARG2 expression in myeloid cells, we showed that ARG2-specific CD4T-cells isolated and expanded from a peripheral pool from a prostate cancer patient could recognize target cells in an ARG2-dependent manner. In the 'cold' in vivo tumor model Lewis lung carcinoma, we found that activation of ARG2-specific T-cells by vaccination significantly inhibited tumor growth. Immune-modulatory vaccines targeting ARG2 thus are a candidate strategy for cancer immunotherapy.


Subject(s)
Arginase , Vaccines , Humans , Immunity , Leukocytes, Mononuclear , Male , T-Lymphocytes/immunology
4.
Cell Stress ; 3(10): 319-327, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31656949

ABSTRACT

PD-L1-specific T cells are a natural part of the T-cell repertoire in humans. Hence, we have previously described spontaneous CD8+ and CD4+ T-cell reactivity against PD-L1 in the peripheral blood of patients with various cancers as well as in healthy donors. It is well described that the expression of the PD-L1 protein is introduced in cells by pro-inflammatory cytokines, e.g. IFN-γ. In the current study, we were able to directly link inflammation with PD-L1-specific T cells by showing that inflammatory mediators such as IFN-γ generate measurable numbers of PD-L1-specific T cells in human PBMCs as well as in in vivo models. These PD-L1-specific T cells can vigorously modulate the cell compartments of the local environment. PD-L1-specific T cells may be important for immune homeostasis by sustaining the ongoing inflammatory response by the suppression of regulatory cell function both directly and indirectly.

5.
Cell Stress ; 3(5): 139-140, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31225509

ABSTRACT

Many different therapeutic strategies focus on targeting tumor-associated macrophages (TAMs), due to their vital role in creating an immune suppressive tumor microenvironment (TME) with the aim to deplete, repro-gram or target the functional mediators secreted by these cells. Immune modulatory vaccination is an emerging strategy to target immune suppressive myeloid populations in the TME. In contrast to the other clinical strategies that target TAMs, this combines both TAM depletion (through direct killing by cytotoxic T cells) and TAM reprogramming (by introducing pro-inflammatory cytokines into the immune suppressive microenvironment).

6.
Semin Immunopathol ; 41(1): 87-95, 2019 01.
Article in English | MEDLINE | ID: mdl-29968045

ABSTRACT

The T-win® technology is an innovative investigational approach designed to activate the body's endogenous anti-regulatory T cells (anti-Tregs) to target regulatory as well as malignant cells. Anti-Tregs are naturally occurring T cells that can directly react against regulatory immune cells because they recognize proteins that these targets express, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase, arginase, and programmed death ligand 1 (PD-L1). The T-win® technology is characterized by therapeutic vaccination with long peptide epitopes derived from these antigens and therefore offers a novel way to target genetically stable cells with regular human leukocyte antigen expression in the tumor microenvironment. The T-win® technology thus also represents a novel way to attract pro-inflammatory cells to the tumor microenvironment where they can directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens. The modification of an immune regulatory environment into a pro-inflammatory milieu potentiates effective anti-tumor T cell responses. Many regulatory immune cells may be reverted into effector cells given the right stimulus. Because T-win® technology is based on the immune-modulatory function of the vaccines, the vaccines activate both CD4 and CD8 anti-Tregs. Of importance, in clinical trials, vaccinations against IDO or PD-L1 to potentiate anti-Tregs have so far proved to be safe, with minimal toxicity.


Subject(s)
Cancer Vaccines/immunology , Immunomodulation/drug effects , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocyte Subsets/immunology , Animals , Biomarkers, Tumor , Cancer Vaccines/administration & dosage , Energy Metabolism , Humans , Immunotherapy/methods , Neoplasms/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
7.
Semin Immunopathol ; 39(3): 317-326, 2017 04.
Article in English | MEDLINE | ID: mdl-27677755

ABSTRACT

Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells-termed anti-regulatory T cells (anti-Tregs)-that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.


Subject(s)
Autoimmunity , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Biomarkers , Cytokines/metabolism , Epitopes/immunology , Humans , Immunomodulation , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Signal Transduction , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Vaccines/immunology
8.
Oncoimmunology ; 5(11): e1238541, 2016.
Article in English | MEDLINE | ID: mdl-27999757

ABSTRACT

Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using the Enzyme-Linked ImmunoSPOT assay, we examined peripheral blood mononuclear cells from HLA-A2+ cancer patients and healthy volunteers for reactivity against the CCL22-derived T-cell epitope. This revealed spontaneous T-cell responses against the CCL22-derived epitope in cancer patients and in healthy donors. Finally, we performed tetramer enrichment/depletion experiments to examine the impact of HLA-A2-restricted CCL22-specific T cells on CCL22 levels among PMBCs. The addition or activation of CCL22-specific T cells decreased the CCL22 level in the microenvironment. Activating CCL22-specific T cells (e.g., by vaccination) may directly target cancer cells and tumor-associated macrophages, thereby modulating Treg recruitment into the tumor environment and augmenting anticancer immunity.

9.
Oncoimmunology ; 5(8): e1202391, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27622072

ABSTRACT

We recently described naturally occurring PD-L1-specific T cells that recognize PD-L1-expressing immune cells as well as malignant cells. In the present study, we investigated whether the immunogenicity of a dendritic cell (DC)-based vaccine could be influenced by co-stimulation with a known PD-L1-derived epitope. We incubated a PD-L1-derived peptide epitope (19 amino acids long) or a control peptide (an irrelevant HIV epitope) with peripheral blood mononuclear cells from patients with malignant melanoma who had received a DC-based vaccine. We observed a significantly higher number of T cells that reacted to the vaccine in cultures that had been co-stimulated with the PD-L1 peptide epitope compared to cultures incubated with control peptide. Next, we characterized a novel PD-L1-derived epitope (23 amino acids long) and found that co-stimulation with both PD-L1 epitopes boosted the immune response elicited by the DC vaccine even further. Consequently, we observed a significant increase in the number of vaccine-reacting T cells in vitro. In conclusion, activation of PD-L1-specific T cells may directly modulate immunogenicity of DC vaccines. Addition of PD-L1 epitopes may thus be an easily applicable and attractive option to augment the effectiveness of cancer vaccines and other immunotherapeutic agents.

10.
Oncoimmunology ; 5(3): e1083672, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27141338

ABSTRACT

In a recent issue of Immunity, Mark Davis and colleagues describe that thymic selection does not eliminate but prunes self-reactive T cell clones. Self-reactive T cells are a natural part of the T-cell repertoire and may be important in the fight against pathogens in addition to being important immune regulators.

11.
Cancer Immunol Immunother ; 65(7): 797-804, 2016 07.
Article in English | MEDLINE | ID: mdl-26724936

ABSTRACT

Recently, there has been an increased focus on the immune checkpoint protein PD-1 and its ligand PD-L1 due to the discovery that blocking the PD-1/PD-L1 pathway with monoclonal antibodies elicits striking clinical results in many different malignancies. We have described naturally occurring PD-L1-specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses, and discusses future opportunities.


Subject(s)
B7-H1 Antigen/immunology , Epitopes, T-Lymphocyte/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Cancer Vaccines/immunology , Humans , Immunotherapy/methods , Neoplasms/therapy , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL