Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
J Control Release ; 365: 950-956, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065415

ABSTRACT

The application and design of protein transduction domains (PTDs) and protein transduction domain mimics (PTDMs) have revolutionized the field of biomacromolecule delivery. Our group has previously synthesized block copolymer PTDMs with well-defined hydrophobic and cationic blocks via ring-opening metathesis polymerization (ROMP). We have optimized the balance of hydrophobicity and cationic density to intracellularly deliver model proteins, active proteins, and antibodies. Despite the presence of serine, threonine, and tyrosine in naturally occurring PTDs, synthetic analogs have yet to be studied in PTDMs. In our present work, we introduce different alcohol groups to our PTDM structures as a new design parameter. A library of nine novel PTDMs were synthesized to incorporate alcohol groups of varying structures and evaluated based on their ability to intracellularly deliver fluorescently labeled antibodies. One PTDM in this novel library, named PTDM4, incorporates alcohol groups in both the hydrophobic and cationic blocks and was found to be the best performing PTDM with almost twice the median fluorescence intensity of the delivered antibody and half the cationic density compared to our positive control, a PTDM thoroughly studied by our group. PTDM4 was further studied by intracellularly delivering the active enzyme, TAT-Cre Recombinase. The activity of TAT-Cre Recombinase delivered by PTDM4 was comparable to that of the positive control, again with half the cationic density. This study is one of the first to examine the effects of alcohol groups on intracellular antibody and active enzyme delivery.


Subject(s)
Polymers , Proteins , Proteins/chemistry , Protein Domains , Polymers/chemistry , Ethanol
2.
Adv Healthc Mater ; 12(15): e2202370, 2023 06.
Article in English | MEDLINE | ID: mdl-36745878

ABSTRACT

Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.


Subject(s)
Alginates , Antibodies, Monoclonal , Rats , Animals , Humans , Alginates/chemistry , Rats, Wistar , Antibodies, Monoclonal/pharmacokinetics , Subcutaneous Tissue/metabolism , Hydrogels/chemistry
3.
Pharmaceutics ; 15(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839922

ABSTRACT

Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.

4.
Pharmaceutics ; 15(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678816

ABSTRACT

Antibodies are not only an important class of biotherapeutic drugs, but also are targeting moieties for achieving active targeting drug delivery. Meanwhile, the rapidly increasing application of antibodies and Fc-fusion proteins has inspired the emerging development of downstream processing technologies. Thus, IgG Fc affinity ligands have come into being and have been widely exploited in antibody purification strategies. Given the high binding affinity and specificity to IgGs, binding stability in physiological medium conditions, and favorable toxicity and immunogenicity profiles, Fc affinity ligands are gradually applied to antibody delivery, non-covalent antibody-drug conjugates or antibody-mediated active-targeted drug delivery systems. In this review, we will briefly introduce IgG affinity ligands that are widely used at present and summarize their diverse applications in the field of antibody-involved drug delivery. The challenges and outlook of these systems are also discussed.

5.
Small Methods ; 7(5): e2201051, 2023 05.
Article in English | MEDLINE | ID: mdl-36228110

ABSTRACT

Despite unprecedented successes of antibody-based cancer immunotherapy, the serious side effects and rapid clearance following systemic administration remain big challenges to realize its full potential. At the same time, combination immunotherapy using multiple antibodies has shown particularly promising in cancer treatment. It is noticed that the working mechanisms of natural holdase and foldase chaperone are desirable to overcome the limitations of therapeutic antibodies. Holdase chaperone stabilizes unfolded client and prevents it from activation and degradation, while foldase chaperone assists unfolded client to its native state to function. Here a holdase/foldase mimetic nanochaperone (H/F-nChap) to co-delivery two types of monoclonal antibodies (mAbs), αCD16 and αPDL1, and resiquimod (R848) is developed, which significantly improves cancer immunotherapy. The H/F-nChap presents holdase activity in blood and normal tissues that hides and protects mAbs from unnecessary targeted activation and degradation, thereby prolonging blood circulation and reducing immunotoxicity in vivo. Furthermore, H/F-nChap switches to foldase activity in the tumor microenvironment that exposes mAbs and releases R848 to enhance the engagement between NK cells and tumor cells and promote immune activation, respectively. The H/F-nChap represents a strategy for safe and spatiotemporal delivery of multiple mAbs, providing a promising platform for improved cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Neoplasms/therapy
6.
Biomaterials ; 288: 121748, 2022 09.
Article in English | MEDLINE | ID: mdl-36038419

ABSTRACT

Intracellular protein delivery is a powerful strategy for developing innovative therapeutics. Nanocarriers present great potential to deliver proteins inside cells by promoting cellular uptake and overcoming entrapment and degradation in acidic endo/lysosomal compartments. Thus, because cytosolic access is essential for eliciting the function of proteins, significant efforts have been dedicated to engineering nanocarriers with maximal endosomal escape regardless of the cell type. On the other hand, controlling the ability of nanocarriers to escape from the endo/lysosomal compartments of particular cells may offer the opportunity for enhancing delivery precision. To test this hypothesis, we developed pH-sensitive polymeric nanocarriers with adjustable endosomal escape potency for selectively reaching the cytosol of defined cancer cells with dysregulated endo/lysosomal acidification. By loading antibodies against nuclear pore complex in the nanocarriers, we demonstrated the selective delivery into the cytosol and subsequent nucleus targeting of cancer cells rather than non-cancerous cells both in vitro and in vivo. Systemically injected nanocarriers loading anti-c-MYC antibodies suppressed c-MYC in solid tumors and inhibit tumor growth without side effects, confirming the therapeutic potential of our approach. These results indicated that regulating the ability of nanocarriers to escape from endo/lysosomal compartments in particular cells is a practical approach for gaining delivery specificity.


Subject(s)
Nanoparticles , Neoplasms , Cytosol/metabolism , Drug Carriers/metabolism , Drug Delivery Systems/methods , Endosomes/metabolism , Humans , Lysosomes/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Polymers/metabolism
7.
Front Neurol ; 13: 870799, 2022.
Article in English | MEDLINE | ID: mdl-35493843

ABSTRACT

In the last four decades, monoclonal antibodies and their derivatives have emerged as a powerful class of therapeutics, largely due to their exquisite targeting specificity. Several clinical areas, most notably oncology and autoimmune disorders, have seen the successful introduction of monoclonal-based therapeutics. However, their adoption for treatment of Central Nervous System diseases has been comparatively slow, largely due to issues of efficient delivery resulting from limited permeability of the Blood Brain Barrier. Nevertheless, CNS diseases are becoming increasingly prevalent as societies age, accounting for ~6.5 million fatalities worldwide per year. Therefore, harnessing the full therapeutic potential of monoclonal antibodies (and their derivatives) in this clinical area has become a priority. Adeno-associated virus-based vectors (AAVs) are a potential solution to this problem. Preclinical studies have shown that AAV vector-mediated antibody delivery provides protection against a broad range of peripheral diseases, such as the human immunodeficiency virus (HIV), influenza and malaria. The parallel identification and optimization of AAV vector platforms which cross the Blood Brain Barrier with high efficiency, widely transducing the Central Nervous System and allowing high levels of local transgene production, has now opened a number of interesting scenarios for the development of AAV vector-mediated antibody delivery strategies to target Central Nervous System proteinopathies.

8.
Gels ; 8(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35621582

ABSTRACT

Immunotherapy targeting checkpoint inhibitors, such as CTLA-4 and/or PD-1, has emerged as a leading cancer therapy. While their combination produces superior efficacy compared to monotherapy, it also magnifies inflammatory and autoimmune toxicity that limits clinical utility. We previously reported that a peri-tumor injection of low-dose hydrogel-encapsulated anti-CTLA-4 produced anti-tumor responses that were equal to, or better than, systemic dosing despite a >80% reduction in total dose. Injection of hydrogel-encapsulated anti-CTLA-4 was associated with low serum exposure and limited autoimmune toxicity, but still synergized with anti-PD-1. In this report, we employ live and ex vivo imaging to examine whether peri-tumor administration specifically targets anti-CTLA-4 to tumor-draining lymph nodes (TDLN) and whether the incorporation of hyaluronidase enhances this effect. Tumor-free survival analysis was also used to measure the impact of hyaluronidase on tumor response. Compared to systemic dosing, peri-tumor injection of hydrogel-encapsulated anti-CTLA-4/DyLight 800 resulted in preferential labeling of TDLN. Incorporating hyaluronidase within the hydrogel improved the rapidity, intensity, and duration of TDLN labeling and significantly improved tumor-free survival. We conclude that hydrogel-encapsulated anti-CTLA acts as a localized antibody reservoir and that inclusion of hyaluronidase optimizes the blockade of CTLA-4 in TDLN and thereby imparts superior anti-tumor immunity.

9.
Angew Chem Int Ed Engl ; 61(12): e202116722, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34995405

ABSTRACT

Despite the high potential of controlling cellular processes and treating various diseases by intracellularly delivered proteins, current delivery systems exhibit poor efficiency due to poor serum stability, cellular entry, and cytosolic availability of proteins. Here, we report a novel functional group, phenyl carbamoylated guanidine (Ph-CG), that greatly enhances the delivery efficiency to various types of cells. Owing to the substantially lowered pKa , the hydrophobic Ph-CG offers optimized inter-macromolecular interactions via enhanced hydrogen-bonding and hydrophobic interactions. The coplanarity of Ph-CG also leads to the better intracellular entry of protein complexes. Intracellularly delivered apoptosis-inducing enzymes and antibodies significantly induce cell viability inhibitions in a serum-containing medium. The newly developed Ph-CG can be introduced to various existing carriers, leading to the realization of future therapeutic protein delivery.


Subject(s)
Polymers , Proteins , Cytosol/metabolism , Drug Delivery Systems , Guanidine/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Proteins/chemistry
10.
Pharmaceutics ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678759

ABSTRACT

A key challenge in treating solid tumors is that the tumor microenvironment often inhibits the penetration of therapeutic antibodies into the tumor, leading to reduced therapeutic efficiency. It has been reported that the combination of ultrasound-responsive micro/nanobubble and therapeutic ultrasound (TUS) enhances the tissue permeability and increases the efficiency of delivery of macromolecular drugs to target tissues. In this study, to facilitate efficient therapeutic antibody delivery to tumors using this combination system, we developed therapeutic antibody-modified nanobubble (NBs) using an Fc-binding polypeptide that can quickly load antibodies to nanocarriers; since the polypeptide was derived from Protein G. TUS exposure to this Herceptin®-modified NBs (Her-NBs) was followed by evaluation of the antibody's own ADCC activity, resulting the retained activity. Moreover, the utility of combining therapeutic antibody-modified NBs and TUS exposure as an antibody delivery system for cancer therapy was assessed in vivo. The Her-NBs + TUS group had a higher inhibitory effect than the Herceptin and Her-NBs groups. Overall, these results suggest that the combination of therapeutic antibody-modified NBs and TUS exposure can enable efficient antibody drug delivery to tumors, while retaining the original antibody activity. Hence, this system has the potential to maximize the therapeutic effects in antibody therapy for solid cancers.

11.
MAbs ; 13(1): 1982447, 2021.
Article in English | MEDLINE | ID: mdl-34747345

ABSTRACT

Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Genetic Therapy , Humans , Immunotherapy , Neoplasms/pathology , Neoplasms/therapy , Oncolytic Viruses/genetics
12.
Adv Funct Mater ; 31(30)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34421476

ABSTRACT

Recently discovered "Trim-Away" mechanism opens a new window for fast and selective degradation of endogenous proteins. However, the in vivo and clinical application of this approach is stuck by the requirement of special skills and equipment needed for the intracellular delivery of antibodies. Hereby, an antibody conjugated polymer nanogel system, Nano-ERASER, for intracellular delivery and release of antibody, and degradation of a specific endogenous protein has been developed. After being delivered into cells, the antibody is released and forms complex with its target protein, and subsequently binds to the Fc receptor of TRIM21. The resulted complex of target protein/antibody/TRIM21 is then degraded by the proteasome. The efficacy of Nano-ERASER has been validated by depleting GFP protein in a GFP expressing cell line. Furthermore, Nano-ERASER successfully degrades COPZ1, a vital protein for cancer cells, and kills those cells while sparing normal cells. Benefit from its convenience and targeted delivery merit, Nano-ERASER technique is promising in providing a reliable tool for endogenous protein function study as well as paves the way for novel antibody-based Trim-Away therapeutic modalities for cancer and other diseases.

13.
Nano Lett ; 21(14): 6022-6030, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34227381

ABSTRACT

Despite the well-recognized clinical success of therapeutic proteins, especially antibodies, their inability to penetrate the cell membrane restricts them to secretory extracellular or membrane-associated targets. Developing a direct cytosolic protein delivery system would offer unique opportunities for intracellular target-related therapeutic proteins. Here, we generated a supercharged polypeptide (SCP) with high cellular uptake efficiency, endosomal escape ability, and good biosafety and developed an SCP with an unnatural amino acid containing the phenylboronic acid (PBA) group, called PBA-SCP. PBA-SCP is capable of potently delivering proteins with various isoelectric points and molecular sizes into the cytosol of living cells without affecting their bioactivities. Importantly, cytosolically delivered antibodies remain functional and are capable of targeting, labeling, and manipulating diverse intracellular antigens. This study demonstrates an efficient and versatile intracellular protein delivery platform, especially for antibodies, and provides new possibilities for expanding protein-based therapeutics to intracellular "undruggable" targets.


Subject(s)
Peptides , Proteins , Biological Transport , Cytosol/metabolism , Endosomes/metabolism , Peptides/metabolism
14.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805888

ABSTRACT

Oral administration of medications is highly preferred in healthcare owing to its simplicity and convenience; however, problems of drug membrane permeability can arise with any administration method in drug discovery and development. In particular, commonly used monoclonal antibody (mAb) drugs are directly injected through intravenous or subcutaneous routes across physical barriers such as the cell membrane, including the epithelium and endothelium. However, intravenous administration has disadvantages such as pain, discomfort, and stress. Oral administration is an ideal route for mAbs. Nonetheless, proteolysis and denaturation, in addition to membrane impermeability, pose serious challenges in delivering peroral mAbs to the systemic circulation, biologically, through enzymatic and acidic blocks and, physically, through the small intestinal epithelium barrier. A number of clinical trials have been performed using oral mAbs for the local treatment of gastrointestinal diseases, some of which have adopted capsules or tablets as formulations. Surprisingly, no oral mAbs have been approved clinically. An enteric nanodelivery system can protect cargos from proteolysis and denaturation. Moreover, mAb cargos released in the small intestine may be delivered to the systemic circulation across the intestinal epithelium through receptor-mediated transcytosis. Oral Abs in milk are transported by neonatal Fc receptors to the systemic circulation in neonates. Thus, well-designed approaches can establish oral mAb delivery. In this review, I will introduce the implementation and possibility of delivering orally administered mAbs with or without nanoparticles not only to the local gastrointestinal tract but also to the systemic circulation.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Drug Delivery Systems , Nanoparticles/chemistry , Administration, Oral , Albumins/chemistry , Animals , Clinical Trials as Topic , Endocytosis , Humans , Hydrogen-Ion Concentration , Immunotherapy , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Intestine, Small/metabolism , Intestine, Small/virology , Mice , Norovirus , Peptides/chemistry , Rats , Transcytosis
15.
MAbs ; 13(1): 1868066, 2021.
Article in English | MEDLINE | ID: mdl-33404287

ABSTRACT

LIGHT is a member of the tumor necrosis factor superfamily, which has been claimed to mediate anti-tumor activity on the basis of cancer cures observed in immunocompetent mice bearing transgenic LIGHT-expressing tumors. The preclinical development of a LIGHT-based therapeutic has been hindered by the lack of functional stability exhibited by this protein. Here, we describe the cloning, expression, and characterization of five antibody-LIGHT fusion proteins, directed against the alternatively spliced extra domain A of fibronectin, a conserved tumor-associated antigen. Among the five tested formats, only the sequential fusion of the F8 antibody in single-chain diabody format, followed by the LIGHT homotrimer expressed as a single polypeptide, yielded a protein (termed "F8-LIGHT") that was not prone to aggregation. A quantitative biodistribution analysis in tumor-bearing mice, using radio-iodinated protein preparations, confirmed that F8-LIGHT was able to preferentially accumulate at the tumor site, with a tumor-to-blood ratio of ca. five to one 24 hours after intravenous administration. Tumor therapy experiments, performed in two murine tumor models (CT26 and WEHI-164), featuring different levels of lymphocyte infiltration into the neoplastic mass, revealed that F8-LIGHT could significantly reduce tumor-cell growth and was more potent than a similar fusion protein (KSF-LIGHT), directed against hen egg lysozyme and serving as negative control of irrelevant specificity in the mouse. At a mechanistic level, the activity of F8-LIGHT was mainly due to an intratumoral expansion of natural killer cells, whereas there was no evidence of expansion of CD8 + T cells, neither in the tumor, nor in draining lymph nodes. Abbreviations: CTLA-4: Cytotoxic T-lymphocytes-associated protein 4; EGFR: Epidermal growth factor receptor; HVEM: Herpesvirus entry mediator; IFNγ: Interferon-gamma; LIGHT: Lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes; LTßR: Lymphotoxin beta receptor; NF-κB: Nuclear factor "kappa-light-chain-enhancer" of activated B cells; NK: Natural killer cells; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; TNF: Tumor necrosis factor.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Killer Cells, Natural/drug effects , Neoplasms/drug therapy , Recombinant Fusion Proteins/pharmacology , Tumor Necrosis Factor Ligand Superfamily Member 14/immunology , Animals , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/metabolism , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Disease Progression , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice, Inbred BALB C , Neoplasms/immunology , Neoplasms/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacokinetics , Tissue Distribution , Tumor Burden/drug effects , Tumor Burden/immunology , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
16.
Nanomedicine ; 32: 102315, 2021 02.
Article in English | MEDLINE | ID: mdl-33065253

ABSTRACT

Intracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier. We demonstrated Hex-antibodies were internalized through multiple endocytic routes into lysosomes and provide evidence of endo/lysosomal disruption and Hex-antibody release to the cytosol. Cytosolic antibodies retained their bioactivity for at least 24 h. Functional effect of Hex delivered anti-STAT3 antibodies was evidenced by inhibition of nuclear translocation of cytosolic transcription factor STAT3. This study has generated understanding of key steps in the Hex intracellular antibody delivery system and will facilitate the development of effective cytosolic antibody delivery and applications in both the therapeutic and research domains.


Subject(s)
Antibodies/pharmacology , Cytosol/metabolism , Drug Delivery Systems , Intracellular Space/metabolism , Animals , Biological Availability , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Endosomes/drug effects , Endosomes/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Immunoglobulin G/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Protein Transport/drug effects , Rabbits , Tissue Distribution/drug effects , Turkeys
17.
Angew Chem Int Ed Engl ; 60(4): 1821-1830, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33034131

ABSTRACT

The primary impediments in developing large antibodies as drugs against intracellular targets involve their low transfection efficiency and suitable reversible encapsulation strategies for intracellular delivery with retention of biological activity. To address this, we outline an electrostatics-enhanced covalent self-assembly strategy to generate polymer-protein/antibody nanoassemblies. Through structure-activity studies, we down-select the best performing self-immolative pentafluorophenyl containing activated carbonate polymer for bioconjugation. With the help of an electrostatics-aided covalent self-assembly approach, we demonstrate efficient encapsulation of medium to large proteins (HRP, 44 kDa and ß-gal, 465 kDa) and antibodies (ca. 150 kDa). The designed polymeric nanoassemblies are shown to successfully traffic functional antibodies (anti-NPC and anti-pAkt) to cytosol to elicit their bioactivity towards binding intracellular protein epitopes and inducing apoptosis.


Subject(s)
Antibodies/administration & dosage , Polymers/chemistry , Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Horseradish Peroxidase/chemistry , Hydrolysis , Static Electricity , Surface Properties , beta-Galactosidase/chemistry
18.
J Control Release ; 330: 161-172, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33340565

ABSTRACT

A new vehicle is designed for the intracellular delivery of antibodies at nanomolar concentrations by combination of domain Z, a small affibody with strong binding affinity to Fc regions of immunoglobulin G (IgG), and the multimers of LK sequences, α-helical cell penetrating peptides (CPP) with powerful cell penetrating activities. Domain Z and multimeric LK are fused together to form LK-domain Z proteins. The LK-domain Z can bind with IgG at a specific ratio at nanomolar concentrations by simple mixing. The IgG/LK-domain Z complexes can successfully penetrate live cells at nanomolar concentration and the delivery efficiency is strongly dependent upon the concentrations of IgG/LK-domain Z complex as well as the species and subclasses of IgGs. The IgG/LK-domain Z complexes penetrate cells via ATP-dependent endocytosis pathway and the majority of delivered IgG seems to escape endosome to cytosol. Remarkably, the delivered IgGs are able to control the targeted intracellular signaling pathway as shown in the down-regulation of pro-survival genes by the delivery of anti-NF-κB using an LK-domain Z vehicle with a cathepsin B-cleavable linker between the LK sequence and domain Z. The simple but very efficient intracellular delivery method of antibodies at nanomolar concentrations is expected to facilitate profound understanding of cell mechanisms and development of new future therapeutics on the basis of intracellular antibodies.


Subject(s)
Cell-Penetrating Peptides , Cytosol , Endosomes , Immunoglobulin G
19.
Nano Res ; 13(6): 1693-1703, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33304449

ABSTRACT

Despite improvements in our understanding of the biology behind triple-negative breast cancer (TNBC), it remains a devastating disease due to lack of an effective targeted therapy. Inhibiting Wnt signaling is a promising strategy to combat TNBC because Wnt signaling drives TNBC progression, chemoresistance, and stemness. However, Wnt inhibition can lead to upregulation of autophagy, which confers therapeutic resistance. This provides an opportunity for combination therapy, as autophagy inhibitors applied concurrently with Wnt inhibitors could increase treatment efficacy. Here, we applied the autophagy inhibitor chloroquine (CQ) to TNBC cells in combination with Frizzled7 antibody-coated nanoshells (FZD7-NS) that suppress Wnt signaling by blocking Wnt ligand/FZD7 receptor interactions, and evaluated this dual treatment in vitro. We found that FZD7-NS can inhibit Axin2 and CyclinD1, two targets of canonical Wnt signaling, and increase the expression of LC3, an autophagy marker. When FZD7-NS and CQ are applied together, they reduce the expression of several stemness genes in TNBC cells, leading to inhibition of TNBC cell migration and self-renewal. Notably, co-delivery of FZD7-NS and CQ is more effective than either therapy alone or the combination of CQ with free FZD7 antibodies. This demonstrates that the nanocarrier design is important to its therapeutic utility. Overall, these findings indicate that combined regulation of Wnt signaling and autophagy by FZD7-NS and CQ is a promising strategy to combat TNBC.

20.
Mol Ther Methods Clin Dev ; 18: 402-414, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32695842

ABSTRACT

Monoclonal antibody (mAb) therapeutics are an effective modality for the treatment of infectious, autoimmune, and cancer-related diseases. However, the discovery, development, and manufacturing processes are complex, resource-consuming activities that preclude the rapid deployment of mAbs in outbreaks of emerging infectious diseases. Given recent advances in nucleic acid delivery technology, it is now possible to deliver exogenous mRNA encoding mAbs for in situ expression following intravenous (i.v.) infusion of lipid nanoparticle-encapsulated mRNA. However, the requirement for i.v. administration limits the application to settings where infusion is an option, increasing the cost of treatment. As an alternative strategy, and to enable intramuscular (IM) administration of mRNA-encoded mAbs, we describe a nanostructured lipid carrier for delivery of an alphavirus replicon encoding a previously described highly neutralizing human mAb, ZIKV-117. Using a lethal Zika virus challenge model in mice, our studies show robust protection following alphavirus-driven expression of ZIKV-117 mRNA when given by IM administration as pre-exposure prophylaxis or post-exposure therapy.

SELECTION OF CITATIONS
SEARCH DETAIL