Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Trop Life Sci Res ; 35(2): 167-185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39234468

ABSTRACT

The antimalarial properties of crude extracts from Quercus infectoria galls were investigated through bioassay-guided fractionation. Acetone (QIA) and methanol (QIM) crude extracts have been reported to have promising antimalarial activity against Plasmodium falciparum (3D7 strain). These extracts were subjected to fractionation using automated preparative high-performance liquid chromatography (prep-HPLC) to identify the most active fractions. Nine fractions were isolated from each extract, of which the fractions QIA11 and QIM16 showed antimalarial activity, with IC50 values of 17.65 ± 1.82 µg/mL and 24.21 ± 1.88 µg/mL, respectively. In comparison, the standard antimalarial drug artemisinin has an IC50 value of 0.004 ± 0.001 µg/mL). Through high-resolution liquid chromatography coupled with mass spectrometry (HR-LCMS) analysis of the fractions, four known compounds were successfully identified: gallic acid, ellagic acid, 1,3,6-tris-o-(3,4,5-trihydroxybenzoyl)-beta-d-glucose and 1-O,6-O-digalloyl-beta-D-glucose.

2.
Bioorg Chem ; 151: 107674, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059071

ABSTRACT

Antimalarial drug resistance is a major obstacle in the ongoing quest against malaria. The disease affects half of the world's population. The majority of them are toddlers and pregnant women. Needed a potent compound to act on drug-resistant Pf at appropriate concentrations without endangering the host. Envisaged solving this issue through rational drug design by creating a novel hybrid drug possessing two pharmacophores that can act on two marvellous and independent aims within the cell. Synthesized a new series of substituted 4-phenyl-1,2,3,6-tetrahydropyridine (THP) 8-Aminoquinoline-based hybrid analogs which have been integrated with quinoline, chloroquine, pamaquine, and primaquine, which exhibited antimalarial activity against Pf. Out of thirteen 4-phenyl-1,2,3,6-THP appended 8-Aminoquinoline derivatives, the compounds 1j, 1e, 1b, and 1l have exhibited good antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-9) strain with the minimum inhibitory concentration. Compound 1b was the most effective and showed consistently good potency against the drug-resistant (RKL-9) strain, although all other arrays showed good antimalarial efficacy. Additional docking and molecular dynamics studies were carried out at several targeting sites to quantify the structural parameters necessary for the activity.


Subject(s)
Aminoquinolines , Antimalarials , Drug Design , Parasitic Sensitivity Tests , Plasmodium falciparum , Humans , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Molecular Docking Simulation , Molecular Structure , Plasmodium falciparum/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Structure-Activity Relationship
3.
J Ethnopharmacol ; 333: 118413, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38824975

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY: Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS: The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS: Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS: The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.


Subject(s)
Albizzia , Malaria , Plant Extracts , Plasmodium berghei , Albizzia/chemistry , Plant Leaves/chemistry , Methanol/chemistry , Solvents/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Malaria/drug therapy , Malaria/prevention & control , Disease Models, Animal , Animals , Mice , Male , Body Temperature/drug effects , Weight Loss/drug effects
4.
Phytochemistry ; 224: 114168, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823569

ABSTRACT

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Subject(s)
Antimalarials , Fruiting Bodies, Fungal , Ganoderma , Plasmodium falciparum , Triterpenes , Ganoderma/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Plasmodium falciparum/drug effects , Fruiting Bodies, Fungal/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Animals , Molecular Structure , Vero Cells , Chlorocebus aethiops , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Lanosterol/chemistry , Lanosterol/isolation & purification , Parasitic Sensitivity Tests , Structure-Activity Relationship , Dose-Response Relationship, Drug
5.
Med Res Rev ; 44(5): 2266-2290, 2024 09.
Article in English | MEDLINE | ID: mdl-38618882

ABSTRACT

Malaria is a life-threatening disease that affects tropical and subtropical regions worldwide. Various drugs were used to treat malaria, including artemisinin and derivatives, antibiotics (tetracycline, doxycycline), quinolines (chloroquine, amodiaquine), and folate antagonists (sulfadoxine and pyrimethamine). Since the malarial parasites developed drug resistance, there is a need to develop new chemical entities with high efficacy and low toxicity. In this context, 1,2,4,5-tetraoxanes emerged as an essential scaffold and have shown promising antimalarial activity. To improve activity and overcome resistance to various antimalarial drugs; 1,2,4,5-tetraoxanes were fused with various aryl/heteroaryl/alicyclic/spiro moieties (steroid-based 1,2,4,5-tetraoxanes, triazine-based 1,2,4,5-tetraoxanes, aminoquinoline-based 1,2,4,5-tetraoxanes, dispiro-based 1,2,4,5-tetraoxanes, piperidine-based 1,2,4,5-tetraoxanes and diaryl-based 1,2,4,5-tetraoxanes). The present review aims to focus on covering the relevant literature published during the past 30 years (1992-2022). We summarize the most significant in vitro, in vivo results and structure-activity relationship studies of 1,2,4,5-tetraoxane-based hybrids as antimalarial agents. The structural evolution of different hybrids can provide the framework for the future development of 1,2,4,5-tetraoxane-based hybrids to treat malaria.


Subject(s)
Antimalarials , Tetraoxanes , Antimalarials/pharmacology , Antimalarials/chemistry , Structure-Activity Relationship , Humans , Tetraoxanes/pharmacology , Tetraoxanes/chemistry , Animals , Malaria/drug therapy , Peroxides/chemistry , Peroxides/pharmacology , Plasmodium falciparum/drug effects
6.
Exp Parasitol ; 261: 108767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679125

ABSTRACT

OBJECTIVES: Malaria is a significant global health challenge, particularly in Africa, Asia, and Latin America, necessitating immediate investigation into innovative and efficacious treatments. This work involves the development of pyrazole substituted 1,3,5-triazine derivatives as antimalarial agent. METHODS: In this study, ten compounds 7(a-j) were synthesized by using nucleophilic substitution reaction, screened for in silico study and their antimalarial activity were evaluated against 3D7 (chloroquine-sensitive) strain of P. falciparum. KEY FINDING: The present work involves the development of hybrid trimethoxy pyrazole 1,3,5-triazine derivatives 7 (a-j). Through in silico analysis, four compounds were identified with favorable binding energy and dock scores. The primary focus of the docking investigations was on the examination of hydrogen bonding and the associated interactions with certain amino acid residues, including Arg A122, Ser A108, Ser A111, Ile A164, Asp A54, and Cys A15. The IC50 values of the four compounds were measured in vitro to assess their antimalarial activity against the chloroquine sensitive 3D7 strain of P. falciparum. The IC50 values varied from 25.02 to 54.82 µg/mL. CONCLUSION: Among the ten derivatives, compound 7J has considerable potential as an antimalarial agent, making it a viable contender for further refinement in the realm of pharmaceutical exploration, with the aim of mitigating the global malaria load.


Subject(s)
Antimalarials , Inhibitory Concentration 50 , Molecular Docking Simulation , Plasmodium falciparum , Pyrazoles , Triazines , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis , Plasmodium falciparum/drug effects , Computer Simulation , Drug Design , Structure-Activity Relationship , Humans , Chloroquine/pharmacology , Chloroquine/chemistry , Hydrogen Bonding
7.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521901

ABSTRACT

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Subject(s)
Antimalarials , Malaria , Mammea , Mice , Animals , Antimalarials/toxicity , Plant Extracts/toxicity , Malaria/drug therapy , Flowers , Body Weight
8.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38479483

ABSTRACT

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Subject(s)
Antimalarials , Plasmodium yoelii , Animals , Mice , Antimalarials/chemistry , Ether/pharmacology , Structure-Activity Relationship , Drug Resistance, Multiple , Ethyl Ethers/pharmacology , Ethers/pharmacology
9.
Heliyon ; 10(5): e27462, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495201

ABSTRACT

Malaria remains a major public health problem worldwide, including in Southeast Asia. Chemotherapeutic agents such as chloroquine (CQ) are effective, but problems with drug resistance and toxicity have necessitated a continuous search for new effective antimalarial agents. Here we report on a virtual screening of ∼300 diarylpentanoids and derivatives, in search of potential Plasmodium falciparum lactate dehydrogenase (PfLDH) inhibitors with acceptable drug-like properties. Several molecules with binding affinities comparable to CQ were chosen for in vitro validation of antimalarial efficacy. Among them, MS33A, MS33C and MS34C are the most promising against CQ-sensitive (3D7) with EC50 values of 1.6, 2.5 and 3.1 µM, respectively. Meanwhile, MS87 (EC50 of 1.85 µM) shown the most active against the CQ-resistant Gombak A strain, and MS33A and MS33C the most effective P. knowlesi inhibitors (EC50 of 3.6 and 5.1 µM, respectively). The in vitro cytotoxicity of selected diarylpentanoids (MS33A, MS33C, MS34C and MS87) was tested on Vero mammalian cells to evaluate parasite selectivity (SI), showing moderate to low cytotoxicity (CC50 > 82 µM). In addition, MS87 exhibited a high SI and the lowest resistance index (RI), suggesting that MS87 may exert effective parasite inhibition with low resistance potential in the CQ-resistant P. falciparum strain. Furthermore, the in vivo toxicity of the molecules on early embryonic development, the cardiovascular system, heart rate, motor activity and apoptosis were assessed in a zebrafish animal model. The overall results indicate the preliminary potential of diarylpentanoids, which need further investigation for their development as new antimalarial agents.

10.
Antibiotics (Basel) ; 13(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38391528

ABSTRACT

The synthesis and antiplasmodial evaluation of new hybrids combining the pharmacophore structures of artemisinin, ciprofloxacin or norfloxacin, and 7-chloroquinoline are reported in this study. The first step for all of the syntheses is the obtainment of key piperazine esters intermediates bearing the drugs ciprofloxacin and norfloxacin. Using these platforms, 18 final compounds were synthesized through a multistep procedure with overall yields ranging between 8 and 20%. All compounds were screened for their antiplasmodial activity against the chloroquine-resistant Plasmodium falciparum FcB1 strain. Compounds 20, 21, 22, and 28, bearing an artesunate fragment with ciprofloxacin, exhibited IC50 values in the range of 3.5-5.4 nM and excellent selectivity indices. Among the compounds bearing the artesunate moiety on the norfloxacin, two of them, 23 and 24, afforded IC50 values of 1.5 nM and 1.9 nM, respectively. They also showed excellent selectivity indices. The most potent compounds were also evaluated against the CQ-resistant Dd2 strain of Plasmodium falciparum, demonstrating that those compounds incorporating the artesunate fragment were the most potent. Finally, the combination of artesunate with either ciprofloxacin or norfloxacin moieties in a single molecular entity proved to substantially enhance the activity and selectivity when compared to the administration of the unconjugated counterparts artesunate/ciprofloxacin and artesunate/norfloxacin.

11.
Heliyon ; 10(2): e24068, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298618

ABSTRACT

This study involves the investigation of various plant parts of Breonadia salicina (Vahl) Hepper and J.R.I. Wood across multiple consecutive seasons. It aims to delve into the phytochemistry of these different plant parts and establish connections between the findings and their biological activities. This comprehensive approach employs metabolomics techniques, with the ultimate goal of exploring the potential for drug development. Samples were collected in Fondwe, a village in Limpopo (South Africa), based on local reports of the efficacy of this plant used by traditional healers in the area. The antimalarial and antitrypanosomal activities of samples collected over the seasons were determined with the parasite lactate dehydrogenase (pLDH) and specific Trypanosoma brucei assays, respectively. Consequently, a total of 24 compounds were tentatively identified through ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Chemical profiles of the different plant parts of Breonadia salicina collected in different seasons produced contrasting metabolic profiles. Chemometric analysis of the UPLC-QTOF-MS data enabled us to determine the chemical variability of the crude stem bark, root and leaf extracts (n = 48) collected over four consecutive seasons by evaluating the metabolomics fingerprinting of the samples using an untargeted approach. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) indicated the existence of two key clusters that are linked to the root, stem bark, and leaves. The stem and root chemistry differed from that of the leaves. Seasonal variations were noted in each plant part, with autumn and winter samples closely grouped compared to spring and summer samples in the methanol leaf extracts. Biochemometric analysis could not relate specific compounds to the antimalarial and antitrypanosomal activities of the active extracts, underscoring the intricate interactions among the secondary metabolites. This study further confirms the optimal plant parts to collect in each season for the most effective antimalarial and antitrypanosomal activities.

12.
Curr Drug Discov Technol ; 21(5): e240124226141, 2024.
Article in English | MEDLINE | ID: mdl-38279721

ABSTRACT

BACKGROUND: Thiazole is a widely studied core structure in heterocyclic chemistry and has proven to be a valuable scaffold in medicinal chemistry. The presence of thiazole in both naturally occurring and synthetic pharmacologically active compounds demonstrates the adaptability of these derivatives. METHODS: The current study attempted to review and compile the contributions of numerous researchers over the last 20 years to the medicinal importance of these scaffolds, with a primary focus on antimalarial activity. The review is based on an extensive search of PubMed, Google Scholar, Elsevier, and other renowned journal sites for a thorough literature survey involving various research and review articles. RESULTS: A comprehensive review of the antimalarial activity of the thiazole scaffold revealed potential therapeutic targets in Plasmodium species. Furthermore, the correlation of structure-activity-relationship (SAR) studies from various articles suggests that the thiazole ring has therapeutic potential. CONCLUSION: This article intends to point researchers in the right direction for developing potential thiazole-based compounds as antimalarial agents in the future.


Subject(s)
Antimalarials , Thiazoles , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/therapeutic use , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/therapeutic use , Humans , Structure-Activity Relationship , Malaria/drug therapy , Animals , Plasmodium/drug effects
13.
J Nat Med ; 78(1): 68-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690111

ABSTRACT

Ceramicines are a series of limonoids which were isolated from the barks of Malaysian Chisocheton ceramicus (Meliaceae), and were known to show various biological activity. Six new limonoids, ceramicines U-Z (1-6), with a cyclopentanone[α]phenanthrene ring system with a ß-furyl ring at C-17 were isolated from the barks of C. ceramicus. Their structures were determined on the basis of the 1D and 2D NMR analyses, and their absolute configurations were investigated by CD spectroscopy. Ceramicine W (3) exhibited potent antimalarial activity against Plasmodium falciparum 3D7 strain with IC50 value of 1.2 µM. In addition, the structure-antimalarial activity relationship (SAR) of the ceramicines was investigated to identify substituent patterns that may enhance activity. It appears that ring B and the functional groups in the vicinity of rings B and C are critical for the antimalarial activity of the ceramicines. In particular, bulky ester substituents with equatorial orientation at C-7 and C-12 greatly increase the antimalarial activity.


Subject(s)
Antimalarials , Limonins , Meliaceae , Antimalarials/pharmacology , Limonins/chemistry , Structure-Activity Relationship , Magnetic Resonance Spectroscopy , Meliaceae/chemistry , Molecular Structure
14.
Biometals ; 37(1): 247-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37938497

ABSTRACT

Malaria, a relentless and ancient adversary, continues to cast its shadow over vast swathes of the globe, afflicting millions of people and have a heavy toll on human health and well-being. Despite substantial progress in the fight against this parasitic disease in recent decades, malaria still persists as a substantial global health concern, especially in some specific region which have limited resources and vulnerable populations. Thus, to ascertain an combating agent for malaria and its associated dysfunction, 4-(4-ethylphenyl)-3-thiosemicarbazide and benzaldehydes based two new thiosemicarbazone ligands (1-2) and their cobalt(II), nickel(II), copper(II), zinc(II) metal complexes (3-10) were synthesized in the present research work. The synthesized compounds were comprehensive characterized through spectral and physical investigations, demonstrating octahedral stereochemistry of the complexes. Further, the antimalarial and antioxidant potential of the compounds (1-10) were analyzed by micro assay and DPPH assay protocols, respectively, to examine the therapeutic aspect of the compounds. The performed biological evaluations revealed that the complexes are more efficient in controlling infectious ailment in comparison of ligands. The complexes (5), (6), (10) shows significant efficiency for malarial and oxidant dysfunctions whereas Zn(II) complex (6) exhibit highest potency with 1.02 ± 0.07 and 2.28 ± 0.05 µM IC50 value. Furthermore, to support the highest antimalarial potency of the (3-6) complexes and their associated ligand (1), the computational studies like molecular docking, DFT, MESP and ADMET analysis were executed which were supported the biological efficacy of the complex (6) by providing numerous parameters like binding interaction electronegativity, electrophilicity, HOMO value and electron density.


Subject(s)
Antimalarials , Coordination Complexes , Malaria , Thiosemicarbazones , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Molecular Docking Simulation , Antioxidants/pharmacology , Antioxidants/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Zinc/chemistry , Copper/chemistry , Chelating Agents
15.
Med Res Rev ; 44(1): 66-137, 2024 01.
Article in English | MEDLINE | ID: mdl-37222435

ABSTRACT

The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).


Subject(s)
Antimalarials , Artemisinins , Tetraoxanes , Humans , Antimalarials/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Plasmodium falciparum , Systematic Reviews as Topic , Tetraoxanes/pharmacology , Tetraoxanes/chemistry
16.
Bioorg Chem ; 143: 107043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134523

ABSTRACT

The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.


Subject(s)
Antimalarials , Artemisinins , Heterocyclic Compounds , Artemisinins/pharmacology , Heterocyclic Compounds/pharmacology , Plasmodium falciparum
17.
Bioorg Med Chem Lett ; 97: 129561, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37967655

ABSTRACT

Following the economic and social state of humanity, Malaria is categorized as one of the life-threatening illness epidemics in under developed countries. For the eradication of the same, 1,2,4-trioxanes 17a1-a2, 17b1-b2, 17c1-c2 15a-c, 18 and 19 have been synthesized continuing the creation of a novel series. Additionally, these novel compounds were tested for their effectiveness against the multidrug-resistant Plasmodium yoelii nigeriensis in mice model using both oral and intramuscular (im) administration routes. The two most potent compounds of the series, 17a1 and 17a2, demonstrated 100 % protection at 48 mg/kg x 4 days via oral route, which is twice as potent as artemisinin. In this model artemisinin provided 100 % protection at a dose of 48 mg/kg × 4 days and 80 % protection at 24 mg/kg × 4 days via im route.


Subject(s)
Antimalarials , Artemisinins , Plasmodium yoelii , Animals , Mice , Antimalarials/pharmacology , Structure-Activity Relationship , Drug Resistance, Multiple , Artemisinins/pharmacology
18.
Fundam Clin Pharmacol ; 38(3): 410-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38146774

ABSTRACT

BACKGROUND: Benzothiazole derivatives have been reported to possess a wide range of biological activities, including antimalarial activity. This systematic review aims to summarize and evaluate the antimalarial activities of benzothiazole analogs. METHODS: We conducted an electronic search using nine databases in October 2017 and subsequently updated in September 2022. We included all original in vitro and in vivo studies that documented the antimalarial activities of compounds containing benzothiazole analogs with no restriction. The risk of bias of each included study was assessed by ToxRTool. RESULTS: Twenty-eight articles were included in our study, which are in vitro, in vivo, or both. Of these, 232 substances were identified to have potent antiplasmodial activity against various strains of the malaria parasite. Benzothiazole analogs show different antimalarial mechanisms, including inhibition of Plasmodium falciparum enzymes in in vitro studies and inhibition of blood parasites in in vivo studies. CONCLUSIONS: Benzothiazole derivatives are promising substances for treating malaria. The structure-activity relationship studies suggest that the substitution pattern of the benzothiazole scaffold plays a crucial role in determining the antimalarial activity of the analog.


Subject(s)
Antimalarials , Benzothiazoles , Plasmodium falciparum , Antimalarials/pharmacology , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Plasmodium falciparum/drug effects , Humans , Structure-Activity Relationship , Animals , Malaria/drug therapy
19.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067508

ABSTRACT

Peptide compounds play a significant role in medicinal chemistry as they can inhibit the activity of species that cause malaria. This literature review summarizes the isolation of antimalarial peptides, the synthesis method with the detailed structure and sequences of each peptide, and discusses the biological activity of the isolated and synthesized compounds. The synthetic routes and reactions for cyclic and linear antimalarial peptides are systematically highlighted in this review including preparing building blocks, protection and deprotection, coupling and cyclization reactions until the target compound is obtained. Based on the literature data and the results, this review's aim is to provide information to discover and synthesize more antimalarial peptide for future research.


Subject(s)
Antimalarials , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Peptides/chemistry , Malaria/drug therapy , Cyclization , Chemistry, Pharmaceutical , Peptides, Cyclic/therapeutic use
20.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37831282

ABSTRACT

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Subject(s)
Anacardium , Antimalarials , Malaria, Falciparum , Malaria , Animals , Mice , Antimalarials/toxicity , Plasmodium falciparum , Transketolase/therapeutic use , Zebrafish , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/drug therapy , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL