Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Neuropsychobiology ; : 1-14, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39293410

ABSTRACT

INTRODUCTION: Bipolar disorder (BD), a mood disorder with recurrent affective episodes and a strong genetic basis is frequently associated with significant comorbidities, both physical and psychiatric, yet its neurobiology remains unclear. Recent evidence underscores oxidative stress as a pivotal factor linking BD to its comorbidities, prompting an investigation into whether this is a sign of a genetic vulnerability or a consequence of the disease. In this study, we systematically reviewed oxidative stress studies conducted on individuals at risk for BD. We performed a meta-analysis on studies examining oxidative DNA damage in these individuals. METHODS: The literature was searched across the databases PubMed, Web of Science, Scopus, Ovid MEDLINE, and Cochrane to locate studies of oxidative stress markers in relatives of patients with BD compared with healthy controls (from 1946 to March 2024). Studies were considered for inclusion based on the following criteria: (i) involvement of first- or second-degree relatives of individuals diagnosed with BD, (ii) presence of a healthy control group, (iii) reporting of oxidative stress parameters for relatives, including mean and standard deviation or median and interquartile range (25-75%) values, and (iv) publication in the English language. Studies comparing the levels of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) or its tautomer 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in individuals at risk for BD with healthy controls were evaluated using a meta-analysis with the random-effects method. The risk of bias was evaluated using the Risk of Bias in Non-Randomized Studies of Exposure (ROBINS-E) tool. RESULTS: Eleven studies were included in the systematic review and four studies for the meta-analysis. The meta-analysis included 543 individuals (first-degree relatives of individuals with BD = 238, control = 305). 8-OH-dG levels were found to be increased in first-degree relatives of individuals with BD compared to healthy controls (random effects: Hedges's g = 0.53, 95% CI = 0.36-0.71, p < 0.001). Findings of oxidative stress markers other than oxidative DNA damage in relatives of individuals with BD are limited and scarce. CONCLUSION: In this meta-analysis, which consists of a limited number of studies, oxidative DNA damage seems to be a trait marker for BD. This finding could be associated with increased comorbidity and a higher risk of premature aging in individuals at risk for BD. However, further studies with larger sample sizes and longitudinal designs are warranted to confirm findings. Clarifying the changes in these markers from individuals at risk for the disorder throughout the course of the illness would help bridge the gap in understanding the role of oxidative pathways in the risk of BD.

2.
Plants (Basel) ; 13(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39204695

ABSTRACT

The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion-rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity ('Trifoliate orange' (Z) > 'Citrange' (ZC) > 'Hongju' (H) > 'Ziyang Xiangcheng' (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.

3.
Vitam Horm ; 125: 367-399, 2024.
Article in English | MEDLINE | ID: mdl-38997170

ABSTRACT

Oxidative damage refers to the harm caused to biological systems by reactive oxygen species such as free radicals. This damage can contribute to a range of diseases and aging processes in organisms. Moreover, oxidative deterioration of lipids is a serious problem because it reduces the shelf life of food products, degrades their nutritional value, and produces reaction products that could be toxic. Antioxidants are effective compounds for preventing lipid oxidation, and synthetic antioxidants are frequently added to foods due to their high effectiveness and low cost. However, the safety of these antioxidants is a subject that is being discussed in the public more and more. Synthetic antioxidants have been found to have potential negative effects on health due to their ability to accumulate in tissues and disrupt natural antioxidant systems. During thermal processing and storage, foods containing reducing sugars and amino compounds frequently produce Maillard reaction products (MRPs). Through the chelation of metal ions, scavenging of reactive oxygen species, destruction of hydrogen peroxide, and suppression of radical chain reaction, MRPs exhibit excellent antioxidant properties in a variety of food products and biological systems. Also, the capacity of MRPs to chelate metals makes them as a potential inhibitor of the enzymatic browning in fruits and vegetables. In this book chapter, the methods used for the evaluation of antioxidant activity of MRPs are provided. Moreover, the antioxidant and antibrowning activities of MRPs in food and biological systems is discussed. MRPs can generally be isolated and used as commercial preparations of natural antioxidants.


Subject(s)
Antioxidants , Maillard Reaction , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Animals , Reactive Oxygen Species/metabolism
4.
Antioxidants (Basel) ; 13(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790678

ABSTRACT

This review comprehensively evaluates the effects of physical exercise on oxidative and nitrosative stress, mainly focusing on the role of antioxidants. Using a narrative synthesis approach, data from empirical studies, reviews, systematic reviews, and meta-analyses published between 2004 and 2024 were collated from databases like PubMed, EBSCO (EDS), and Google Scholar, culminating in the inclusion of 41 studies. The quality of these studies was rigorously assessed to ensure the clarity of objectives, coherence in arguments, comprehensive literature coverage, and depth of critical analysis. Findings revealed that moderate exercise enhances antioxidant defenses through hormesis, while excessive exercise may exacerbate oxidative stress. The review also highlights that while natural dietary antioxidants are beneficial, high-dose supplements could impede the positive adaptations to exercise. In conclusion, the review calls for more focused research on tailored exercise and nutrition plans to further understand these complex interactions and optimize the health outcomes for athletes and the general population.

5.
Antioxidants (Basel) ; 13(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539866

ABSTRACT

Crop production is being impacted by higher temperatures, which can decrease food yield and pose a threat to human nutrition. In the current study, edible and wild radish sprouts were exposed to elevated growth temperatures along with the exogenous application of various elicitors to activate defense mechanisms. Developmental traits, oxidative damage, glucosinolate and anthocyanin content, and antioxidant capacity were evaluated alongside the development of a predictive model. A combination of four elicitors (citric acid, methyl jasmonate-MeJa, chitosan, and K2SO4) and high temperatures were applied. The accumulation of bioactives was significantly enhanced through the application of two elicitors, K2SO4 and methyl jasmonate (MeJa). The combination of high temperature with MeJa prominently activated oxidative mechanisms. Consequently, an artificial neural network was developed to predict the behavior of MeJa and temperature, providing a valuable projection of plant growth responses. This study demonstrates that the use of elicitors and predictive analytics serves as an effective tool to investigate responses and enhance the nutritional value of Raphanus species sprouts under future conditions of increased temperature.

6.
Antioxidants (Basel) ; 12(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38001816

ABSTRACT

CDAC (coulometrically determined antioxidant capacity) involves the determination of the antioxidant capacity of individual compounds or their mixtures using constant-current coulometry, with electrogenerated Br2 as the titrant, and biamperometric detection of the endpoint via Br2 excess. CDAC is an accurate, sensitive, rapid, and cheap measurement of the mol electrons (mol e-) transferred in a redox process. In this study, the CDAC of 48 individual antioxidants commonly found in foods has been determined. The molar ratio CDAC (CDACχ, mol e- mol-1) of representative antioxidants is ranked as follows: tannic acid > malvidin-3-O-glucoside ≃ curcumin > quercetin > catechin ≃ ellagic acid > gallic acid > tyrosol > BHT ≃ hydroxytyrosol > chlorogenic acid ≃ ascorbic acid ≃ Trolox®. In many cases, the CDACχ ranking of the flavonoids did not comply with the structural motifs that promote electron or hydrogen atom transfers, known as the Bors criteria. As an accurate esteem of the stoichiometric coefficients for reactions of antioxidants with Br2, the CDACχ provides insights into the structure-activity relationships underlying (electro)chemical reactions. The electrochemical ratio (ER), defined as the antioxidant capacity of individual compounds relative to ascorbic acid, represents a dimensionless nutritional index that can be used to estimate the antioxidant power of any foods on an additive basis.

7.
Antioxidants (Basel) ; 12(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38001830

ABSTRACT

Sickle cell anemia (SCA) is a genetic disease caused by the homozygosity of the HBB:c.20A>T mutation, which results in the production of hemoglobin S (HbS). In hypoxic conditions, HbS suffers autoxidation and polymerizes inside red blood cells, altering their morphology into a sickle shape, with increased rigidity and fragility. This triggers complex pathophysiological mechanisms, including inflammation, cell adhesion, oxidative stress, and vaso-occlusion, along with metabolic alterations and endocrine complications. SCA is phenotypically heterogeneous due to the modulation of both environmental and genetic factors. Pediatric cerebrovascular disease (CVD), namely ischemic stroke and silent cerebral infarctions, is one of the most impactful manifestations. In this review, we highlight the role of oxidative stress in the pathophysiology of pediatric CVD. Since oxidative stress is an interdependent mechanism in vasculopathy, occurring alongside (or as result of) endothelial dysfunction, cell adhesion, inflammation, chronic hemolysis, ischemia-reperfusion injury, and vaso-occlusion, a brief overview of the main mechanisms involved is included. Moreover, the genetic modulation of CVD in SCA is discussed. The knowledge of the intricate network of altered mechanisms in SCA, and how it is affected by different genetic factors, is fundamental for the identification of potential therapeutic targets, drug development, and patient-specific treatment alternatives.

8.
Food Res Int ; 173(Pt 2): 113410, 2023 11.
Article in English | MEDLINE | ID: mdl-37803743

ABSTRACT

The potential of peptides generated by simulated gastrointestinal digestion (SGID) of two products derived from Amaranthus manteggazianus seeds, flour (F) and beverage (B), to exert peroxyl scavenging activity (ORAC) and antioxidant action on intestinal cells was studied. B was prepared by solubilisation of seed proteins, with the addition of gums and the application of a pasteurization treatment. The gastrointestinal digests FD and BD showed some differences in the peptide/polypeptide composition. The SGID produced increased ORAC activity for both samples, with some differences in the ORAC of the whole digests BD and FD and of some gel filtration fractions. Bioaccessible fractions (FDdbs and BDdbs) were obtained after treatment with cholestyramine resin to remove bile salts due to their cytotoxicity and oxidative effect. BDdbs presented a greater ORAC potency (IC50: 0.05 ± 0.01 and 0.008 ± 0.004 mg protein/ml for FDdbs and BDdbs, respectively). These fractions showed low cytotoxicity values (measured by LDH release) and produced high intracellular ROS inhibition (around 80 %), increased the SOD activity and the GSH content, with no effect on GPx activity in Caco2-TC7 cells exposed to H2O2. Several fractions with MM < 2.2 kDa presented also these cellular actions; fractions from FD induced higher increases in GSH concentration. Amaranth flour and a processed matrix like the beverage are shown as sources of bioactive peptides with potential cell antioxidant activity.


Subject(s)
Amaranthus , Antioxidants , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Flour , Amaranthus/chemistry , Caco-2 Cells , Hydrogen Peroxide/metabolism , Plant Proteins/chemistry , Peptides/pharmacology , Peptides/metabolism , Beverages , Digestion
9.
Plant Physiol Biochem ; 203: 108006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696192

ABSTRACT

Phosphorus (P) plays a crucial role in plant growth. Insufficient availability of inorganic phosphate (Pi) can significantly impact crop yields. To address this, we previously developed transgenic rice expressing the low polyphosphate kinase gene (ppk) - known as ETRS - to enhance the efficiency of P resource utilization. Previous studies have shown that ETRS thrives and presents high yields in the low P culture. ETRS and wild-type rice (WT) were cultivated to the heading stage at 15 µM of P in the low P (LP) culture and 300 µM of P in the normal culture (CK) to identify the molecular pathways behind low P tolerance. Our findings revealed that polyphosphate (polyP) significantly enhanced the growth performance of ETRS in the LP culture. This enhanced tolerance can be attributed to polyP's capacity to mitigate oxidative damage induced by LP. This was evidenced by the reduction in levels of superoxide radicals, hydrogen peroxide, and malondialdehyde. PolyP also improved the antioxidant capacity of ETRS under LP stress by regulating enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as non-enzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). In addition, transcriptomics analysis suggested that polyP synthesis positively promoted the expressions of SOD, POD, and CAT related genes and played an active role in regulating the expression of AsA-GSH cycle system related genes in ETRS in the LP culture. These results strongly support the notion that polyP within ETRS mitigates oxidative damage through enhancement of the antioxidant system, ultimately bolstering tolerance to LP conditions.

10.
Pregnancy Hypertens ; 31: 54-59, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587441

ABSTRACT

OBJECTIVES: An imbalanced redox homeostasis resulting in oxidative stress is present in preeclampsia. Peroxiredoxin-1 (PRDX1) and thioredoxin-1 (TRX1) regulatory enzymes are also contributing to the redox homeostasis, but were not investigated so far in preeclampsia. Thus, we have aimed to characterize PRDX1, TRX1 and oxidative stress biomarkers in blood samples of pregnant women with preeclampsia. STUDY DESIGN: Twelve patients with preeclampsia (PE) were enrolled into the study. Seven third trimester healthy pregnant women (HP) were accepted as control group. MAIN OUTCOME MEASURES: Peripheral venous blood samples of healthy and preeclamptic pregnant women were analyzed. Plasma level of advanced oxidation protein products (AOPP) was determined by spectrophotometry. The exofacial PRDX1 and TRX1 expression of lymphocytes and monocytes was detected by flow cytometry. RESULTS: The plasma AOPP level was significantly higher in preeclampsia compared to the healthy pregnant group. Significantly higher percentage of PRDX1 and TRX1 expressing lymphocytes and monocytes were detected in the blood samples of preeclamptic women compared to healthy pregnant controls. The ratio of circulating PRDX1 and TRX1 expressing lymphocytes and monocytes showed a significant inverse correlation with the birth weight of newborns. CONCLUSIONS: We have revealed that the level of advanced oxidation protein products is increased and the exofacial peroxiredoxin-1 and thioredoxin-1 system in lymphocytes and monocytes is upregulated in preeclampsia. In addition, the ratio of peroxiredoxin-1 and thioredoxin-1 positive circulating lymphocytes and monocytes correlates inversely with the neonatal birth weight, which finding indicates that pregnancies complicated by intrauterine growth restriction are accompanied by a higher level of oxidative stress.


Subject(s)
Pre-Eclampsia , Female , Humans , Infant, Newborn , Pregnancy , Advanced Oxidation Protein Products/metabolism , Birth Weight , Lymphocytes , Monocytes , Peroxiredoxins , Thioredoxins/metabolism , Up-Regulation
11.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432191

ABSTRACT

Totally ignoring that the five enthalpies of reaction­bond dissociation enthalpy (BDE), adiabatic ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE)­characterizing the three free radical scavenging mechanisms­direct hydrogen atom transfer (HAT), sequential electron transfer proton transfer (SET-PT), and stepwise proton loss electron transfer (SPLET)­are not independent of each other, a recent publication on the antioxidant activity of dietary vitamins compared various vitamins and "found" different quantities, which should be strictly equal by virtue of energy conservation. Aiming to clarify this point, as well as to avoid such mistakes in future studies and to unravel errors in the previous literature, in the present paper we formulate two theorems that any sound results on antioxidation should obey. The first theorem states that the sums of the enthalpies characterizing the individual steps of SET-PT and SPLET are equal: IP+PDE = PA+ETE (=H2). This is a mathematical identity emerging from the fact that both the reactants and the final products of SET-PT and SPLET are chemically identical. The second theorem, which is also a mathematical identity, states that H2 − BDE = IPH > 0, where IPH is the ionization potential of the H-atom in the medium (e.g., gas or solvent) considered. Due to their general character, these theorems may/should serve as necessary sanity tests for any results on antioxidant activity, whatever the method employed in their derivation. From a more general perspective, they should represent a serious word of caution regarding attempts to assign the preferred free radical scavenging pathway based merely on thermochemical descriptors.


Subject(s)
Antioxidants , Vitamins , Antioxidants/pharmacology , Antioxidants/chemistry , Protons , Vitamin A , Free Radicals/chemistry
12.
Free Radic Res ; 56(5-6): 378-397, 2022.
Article in English | MEDLINE | ID: mdl-36063087

ABSTRACT

In this review, we have reported the antioxidant mechanisms and structure-antioxidant activity relationship of several chalcone derivatives, investigated in the recent past, based on the density functional theory (DFT) calculations, considering free radical scavenging and metal chelation ability. The antioxidant mechanisms include hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), single electron transfer followed by proton transfer (SET-PT), sequential proton loss hydrogen atom transfer (SPLHAT), sequential double proton loss electron transfer (SdPLET), sequential triple proton loss double electron transfer (StPLdET), sequential triple proton loss triple electron transfer (StPLtET), double HAT, double SPLET, double SET-PT, triple HAT, triple SET-PT, triple SPLET, proton-coupled electron transfer (PCET), single electron transfer (SET), radical adduct formation (RAF) and radical adduct formation followed by hydrogen atom abstraction (RAF-HAA). Furthermore, solvent effects have also been considered using different solvation models. The feasibility of scavenging different reactive oxygen and nitrogen species (ROS/RNS) has been discussed considering various factors such as the number and position of hydroxyl as well as methoxy groups present in the antioxidant molecule, stability of the species formed after scavenging reactive species, nature of substituent, steric effects, etc. This review opens new perspectives for designing new compounds with better antioxidant potential.


Subject(s)
Chalcone , Chalcones , Antioxidants/pharmacology , Chalcones/pharmacology , Protons , Chalcone/pharmacology , Thermodynamics , Hydrogen
13.
Molecules ; 27(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956986

ABSTRACT

The pharmaceutical success of atorvastatin (ATV), a widely employed drug against the "bad" cholesterol (LDL) and cardiovascular diseases, traces back to its ability to scavenge free radicals. Unfortunately, information on its antioxidant properties is missing or unreliable. Here, we report detailed quantum chemical results for ATV and its ortho- and para-hydroxy metabolites (o-ATV, p-ATV) in the methanolic phase. They comprise global reactivity indices, bond order indices, and spin densities as well as all relevant enthalpies of reaction (bond dissociation BDE, ionization IP and electron attachment EA, proton detachment PDE and proton affinity PA, and electron transfer ETE). With these properties in hand, we can provide the first theoretical explanation of the experimental finding that, due to their free radical scavenging activity, ATV hydroxy metabolites rather than the parent ATV, have substantial inhibitory effect on LDL and the like. Surprisingly (because it is contrary to the most cases currently known), we unambiguously found that HAT (direct hydrogen atom transfer) rather than SPLET (sequential proton loss electron transfer) or SET-PT (stepwise electron transfer proton transfer) is the thermodynamically preferred pathway by which o-ATV and p-ATV in methanolic phase can scavenge DPPH• (1,1-diphenyl-2-picrylhydrazyl) radicals. From a quantum chemical perspective, the ATV's species investigated are surprising because of the nontrivial correlations between bond dissociation energies, bond lengths, bond order indices and pertaining stretching frequencies, which do not fit the framework of naive chemical intuition.


Subject(s)
Hydrogen , Protons , Antioxidants/chemistry , Atorvastatin , Free Radical Scavengers/chemistry , Free Radicals/chemistry , Hydrogen/chemistry , Thermodynamics
14.
J Food Biochem ; 46(10): e14265, 2022 10.
Article in English | MEDLINE | ID: mdl-35661366

ABSTRACT

There are no medical drugs that provide an acceptable weight loss with minimal adverse effects. This study evaluated the Moringa peregrina (MP) seed extract's anti-obesity effect. Twenty-four (6/each group) male Sprague Dawley rats were divided into group Ι (control), group ΙΙ (high-fat diet [HFD]), group ΙΙΙ (HFD+ MP [250 mg/kg b.wt]), and group ΙV (HFD+ MP [500 mg/kg b.wt]). MP administration significantly ameliorated body weight gains and HFD induced elevation in cholesterol, triglycerides, LDL, and reduced HDL. Moreover, MP seed oil showed high free radical-scavenging activity, delayed ß-carotene bleaching and inhibited lipoprotein and pancreatic lipase enzymes. High-performance liquid chromatography (HPLC) revealed three major active components: crypto-chlorogenic acid, isoquercetin, and astragalin. Both quantitative Real-time PCR (RT-PCR) and western blotting revealed that MP seeds oil significantly decreased the expression of lipogenesis-associated genes such as peroxisome proliferator-activated receptors gamma (PPARγ) and fatty acid synthase (FAS) and significantly elevated the expression of lipolysis-associated genes (acetyl-CoA carboxylase1, ACCl). The oil also enhanced phosphorylation of AMP-activated protein kinase alpha (AMPK-α) and suppressed CCAAT/enhancer-binding protein ß (C/EBPß). In conclusion, administration of M. peregrina seeds oil has anti-obesity potential in HFD-induced obesity in rats. PRACTICAL APPLICATIONS: M. peregrina seeds oil had a potential anti-obesity activity that may be attributed to different mechanisms. These included decreasing body weight, and body mass index and improving lipid levels by decreasing total cholesterol, triglycerides and LDL-C, and increasing HDL-C. Also, M. peregrina seeds oil regulated adipogenesis-associated genes, such as downregulating the expression of (PPARγ, C/EBPα, and FAS) and improving and upregulating the expression and phosphorylation of AMPKα and ACCl. Despite that M. peregrina extract has reported clear anti-obesity potential through animal and laboratory studies, the available evidence-based on human clinical trials are very limited. Therefore, further studies are needed that could focus on clinical trials investigating anti-obesity potential different mechanisms of M. peregrina extract in humans.


Subject(s)
Diet, High-Fat , Moringa , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/pharmacology , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/pharmacology , Acetyl Coenzyme A/therapeutic use , Adipocytes , Animals , Antioxidants/metabolism , Body Weight , Chlorogenic Acid/metabolism , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Diet, High-Fat/adverse effects , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/pharmacology , Fatty Acid Synthases/therapeutic use , Free Radicals/metabolism , Free Radicals/pharmacology , Free Radicals/therapeutic use , Humans , Lipase/metabolism , Male , Moringa/metabolism , Obesity/drug therapy , Obesity/etiology , PPAR gamma/genetics , PPAR gamma/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Oils/metabolism , Rats , Rats, Sprague-Dawley , Seeds/metabolism , Triglycerides/metabolism , beta Carotene
15.
Molecules ; 27(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335368

ABSTRACT

Betanin and betanidin are compounds with extensive interest; they are effectively free radical scavengers. The present work aims to elucidate the differences between the mechanism of the antioxidant activity of betanin, betanidin, and their respective C15-epimers. Shape Theory establishes comparisons between the molecules' geometries and determines parallelisms with the descriptors BDE, PA, ETE IP, PDE, and infrared spectra (IR) obtained from the molecule simulations. Furthermore, the molecules were optimized using the B3LYP/6-31+G(d,p) protocol. Finally, the molecular docking technique analyzes the antioxidant activity of the compounds in the complex with the therapeutic target xanthine oxidase (XO), based on a new proposal for the geometrical arrangement of the ligand atoms in the framework of Shape Theory. The results obtained indicate that the SPLET mechanism is the most favorable in all the molecules studied and that the first group that loses the hydrogen atom in the four molecules is the C17COOH, presenting less PA the isobetanidin. Furthermore, regarding the molecular docking, the interactions of these compounds with the target were favorable, standing out to a greater extent the interactions of isobetanidin with XO, which were analyzed after applying molecular dynamics.


Subject(s)
Antioxidants , Betacyanins , Antioxidants/chemistry , Antioxidants/pharmacology , Betacyanins/chemistry , Density Functional Theory , Molecular Docking Simulation , Molecular Dynamics Simulation , Spectrum Analysis
16.
Front Genet ; 12: 721252, 2021.
Article in English | MEDLINE | ID: mdl-34490047

ABSTRACT

Background: Oxidative stress is related to oncogenic transformation in kidney renal clear cell carcinoma (KIRC). We intended to identify a prognostic antioxidant gene signature and investigate its relationship with immune infiltration in KIRC. Methods: With the support of The Cancer Genome Atlas (TCGA) database, we researched the gene expression and clinical data of KIRC patients. Antioxidant related genes with significant differences in expression between KIRC and normal samples were then identified. Through univariate and multivariate Cox analysis, a prognostic gene model was established and all patients were divided into high- and low-risk subgroups. Single sample gene set enrichment analysis was adopted to analyze the immune infiltration, HLA expression, and immune checkpoint genes in different risk groups. Finally, the prognostic nomogram model was established and evaluated. Results: We identified six antioxidant genes significantly correlated with the outcome of KIRC patients as independent predictors, namely DPEP1 (HR = 0.97, P < 0.05), GSTM3 (HR = 0.97, P < 0.05), IYD (HR = 0.33, P < 0.05), KDM3B (HR = 0.96, P < 0.05), PRDX2 (HR = 0.99, P < 0.05), and PRXL2A (HR = 0.96, P < 0.05). The high- and low-risk subgroups of KIRC patients were grouped according to the six-gene signature. Patients with higher risk scores had poorer prognosis, more advanced grade and stage, and more abundance of M0 macrophages, regulatory T cells, and follicular helper T cells. There were statistically significant differences in HLA and checkpoint gene expression between the two risk subgroups. The performance of the nomogram was favorable (concordance index = 0.766) and reliably predicted the 3-year (AUC = 0.792) and 5-year (AUC = 0.766) survival of patients with KIRC. Conclusion: The novel six antioxidant related gene signature could effectively forecast the prognosis of patients with KIRC, supply insights into the interaction between cellular antioxidant mechanisms and cancer, and is an innovative tool for selecting potential patients and targets for immunotherapy.

17.
Biomolecules ; 11(6)2021 05 21.
Article in English | MEDLINE | ID: mdl-34064164

ABSTRACT

Skin barrier damage can be the result of various external factors including heat, radiation, chemicals and many others. Any interruption of the skin barrier integrity causes the exposure of the organism to harmful environmental factors. Therefore, there is an urgent need to develop novel therapeutics characterized by high bioavailability and effectiveness in skin damage recovery. Birch bark is known as a clinically proven, traditional medicinal remedy to accelerate wound healing. Lupeol, one of the main birch bark ingredients, shows a wide range of biological activity beneficial to the skin. The purpose of the research was to determine the influence of new lupeol derivatives on keratinocyte and fibroblast migration and proliferation, as well as to investigate various mechanisms of their antioxidant activity. The chemical modification of lupeol structure was intended to obtain more effective therapeutics characterized by higher bioavailability, permeability and safety of use. The novel triterpenes presented in this study were evaluated as the potential active ingredients preventing skin tissue degradation. Lupeol esters influence skin cells' motility and proliferation. Importantly, they are able to reduce reactive oxygen species and act indirectly by protecting the skin protein structure from being oxidized by free radicals.


Subject(s)
Antioxidants , Keratinocytes , Pentacyclic Triterpenes , Skin , Wound Healing/drug effects , Wounds and Injuries , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Pentacyclic Triterpenes/chemical synthesis , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Skin/injuries , Skin/metabolism , Skin/pathology , Wounds and Injuries/drug therapy , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
18.
Phytochemistry ; 189: 112831, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146991

ABSTRACT

Daphnetin, a biologically active coumarin derivative found in plants of the genus Daphne, is a potent antioxidant phenolic compound. The present work describes the mechanisms and kinetics of the HO, NO, HOO, and NO2 scavenging activities of daphnetin in physiological environments using quantum chemistry calculations. The main antiradical mechanisms have been studied: formal hydrogen transfer (FHT), sequential electron transfer proton transfer (SETPT), sequential proton loss electron transfer (SPLET), and radical adduct formation (RAF). Besides its good HO scavenging activity in physiological environments, daphnetin is expected to exhibit good HOO and NO2 scavenging activities in water with koverall = 1.51 × 107 and 4.79 × 108 M-1s-1, respectively. The FHT mechanism decides the HO scavenging activity in aqueous solution, as well as HO, HOO, and NO2 scavenging activities in lipid media, while SPLET is the primary mechanism in water for HOO and NO2 scavenging activities. The theoretical predictions were found to be in good agreement with the available experimental data, which supports the reliability of the calculations.


Subject(s)
Antioxidants , Umbelliferones , Free Radical Scavengers , Free Radicals , Reproducibility of Results , Thermodynamics
19.
Int J Mol Sci ; 22(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670490

ABSTRACT

The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.


Subject(s)
Energy Metabolism , Mitochondria/pathology , Mitochondrial Diseases/pathology , Oxidative Stress , Animals , Carcinogenesis/pathology , Humans , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/metabolism , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Precision Medicine , Reactive Oxygen Species/metabolism
20.
Adv Nutr ; 12(4): 1514-1539, 2021 07 30.
Article in English | MEDLINE | ID: mdl-33578416

ABSTRACT

High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.


Subject(s)
Meat Products , Animals , Antioxidants/pharmacology , Humans , Malondialdehyde , Meat/analysis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL