Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.442
Filter
1.
Cardiol Young ; : 1-3, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39376086

ABSTRACT

BACKGROUND: Accurate measurement of transcutaneous oxygen saturation is important for the assessment of cyanosis in CHD. Aim of this study was the evaluation of a supplementary transcutaneous oxygen saturation measurement with an Apple watch® in children with cyanotic heart disease. MATERIAL AND METHODS: During a six-minute walk test, measurement of transcutaneous oxygen saturation was performed simultaneously with an Oximeter (Nellcor, Medtronic, USA) and an Apple watch® Series 7 (Apple inc, USA) in 36 children with cyanotic heart disease. RESULTS: Median age was 9.2 (IQR 5.7-13.8) years. Transcutaneous oxygen saturation measurement with the Apple watch® was possible in 35/36 and 34/36 subjects before and after six-minute walk test. Children, in whom Apple watch® measurement was not possible, had a transcutaneous oxygen saturation < 85% on oximeter. Before six-minute walk test, median transcutaneous oxygen saturation was 93 (IQR 91-97) % measured by oximeter and 95 (IQR 93-96) % by the Apple watch®. After a median walking distance of 437 (IQR 360-487) m, transcutaneous oxygen saturation dropped to 92 (IQR 88-95, p < 0.001) % by oximeter and to 94 (IQR 90-96, p = 0.013) % measured with the Apple watch®. CONCLUSION: In children with mild cyanosis measurement of transcutaneous oxygen saturation with an Apple watch® showed only valid results if transcutaneous oxygen saturation was > 85%, with higher values being measured with the smart watch. In children with moderate or severe cyanosis transcutaneous oxygen saturation, measurement with the Apple watch® was not reliable and cannot be recommended to monitor oxygen saturation at home.

2.
Stress Biol ; 4(1): 42, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377848

ABSTRACT

Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.

3.
J Plant Pathol ; 106(3): 971-978, 2024.
Article in English | MEDLINE | ID: mdl-39359493

ABSTRACT

Fire blight caused by Erwinia amylovora reached Kazakhstan in 2008. Here, the disease poses a threat not only to agricultural production of apples and pears, but also to the forests of wild Malus sieversii, the progenitor of most domesticated apple varieties worldwide. In the period 2019-2021, the spread of fire blight in the growth area of wild apples was limited by the weather conditions. In 2022, late spring and early summer were characterized by increased rainfall and moderate temperatures favorable for the disease. The goal of this study was to monitor the distribution of fire blight in private households and small orchards in the zones adjacent to wild apple distribution areas. A total of 91 samples with fire blight-compatible symptoms were collected from cultural apples (68), wild apple (10), pear (5), hawthorn (7), and quince (1) in south-eastern and eastern Kazakhstan, resulting in 21 isolates (one from pear, one from quince, and 19 from apple) of E. amylovora. All isolates belonged to the archetypal CRISPR genotype A. Considering the relative proximity of the infections to the forests of wild M. sieversii, additional measures for fire blight control and prevention will have to be implemented, including state monitoring of the wild apple forests for disease symptoms and awareness campaigns for specially protected natural territories that safeguard M. sieversii, as well as for local pomaceous-fruit growing communities.

4.
New Phytol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363422

ABSTRACT

The sweetness of apple fruit is a key factor in the improvement of apple varieties, with fructose being the sweetest of the soluble sugars, playing a crucial role in determining the overall sweetness of the apple. Therefore, uncovering the key genes controlling fructose accumulation and deciphering the regulatory mechanisms of fructose are vitally important for the improvement of apple varieties. In this study, through BSA-seq and transcriptome analysis of the 'Changfu 2' × 'Golden Delicious' F1 hybrid population, MdNAC5 was identified as a key regulatory gene for fructose content. MdNAC5 was shown to significantly influence fructose accumulation in both apples and tomatoes. Furthermore, we conducted a detailed identification of sugar transporters and metabolic enzymes in apples, discovering that MdNAC5 can enhance fructose accumulation in vacuoles and the conversion of sucrose to fructose by binding to and activating the promoters of the vacuolar sugar transporter MdTST2 and the neutral invertase MdNINV6. Additionally, MdNAC5 regulated the MdEIN3.4-MdSWEET15a module, strengthening the unloading of sucrose in the phloem of the fruit. Our results reveal a new mechanism by which MdNAC5 regulates fructose accumulation in apples and provide theoretical foundations for improving apple sweetness through genetic modification.

5.
Article in English | MEDLINE | ID: mdl-39363440

ABSTRACT

INTRODUCTION: Atrial fibrillation (Afib) is a prevalent chronic arrhythmia associated with severe complications, including stroke, heart failure, and increased mortality. This review explores the use of smartwatches for Afib detection, addressing the limitations of current monitoring methods and emphasizing the potential of wearable technology in revolutionizing healthcare. RESULTS/OBSERVATION: Current Afib detection methods, such as electrocardiography, have limitations in sensitivity and specificity. Smartwatches with advanced sensors offer continuous monitoring, improving the chances of detecting asymptomatic and paroxysmal Afib. The review meticulously examines major clinical trials studying Afib detection using smartwatches, including the landmark Apple Heart Study and ongoing trials such as the Heart Watch, Heartline, and Fitbit Heart Study. Detailed summaries of participant numbers, smartwatch devices used, and key findings are presented. It also comments on the cost-effectiveness and scalability of smartwatch-based screening, highlighting the potential to reduce healthcare costs and improve patient outcomes. CONCLUSION/RELEVANCE: The integration of wearable technology into healthcare can lead to earlier diagnosis, improved patient engagement, and enhanced cardiac health monitoring. Despite ethical considerations and disparities, the potential benefits outweigh the challenges. This review calls for increased awareness, collaboration with insurance companies, and ongoing research efforts to optimize smartwatch accuracy and encourage widespread adoption of Afib detection. With insights from major trials, this review serves as a comprehensive reference for healthcare professionals and policymakers, guiding future strategies in the early diagnosis and management of atrial fibrillation.

6.
J Hazard Mater ; 480: 136034, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366041

ABSTRACT

An eight-compartment physiologically based pharmacokinetic (PBPK) model was used to simulate the bioaccumulation and distribution of arsenic (As) within the apple snail (Pomacea canaliculata) following the ingestion of As-contaminated lettuce. The bioaccumulation results revealed that the shell contained the majority (67.21 %) of the total As content, with the liver and the head-foot containing approximately 11.14 % and 10.45 % of the total As content in the snail, respectively. Modeling quantified the process of intestine-stomach absorption of dietborne As and revealed its crucial role in the subsequent distribution of As within the body. The liver is the primary metabolic site, whereas the shell is the primary storage site. Exposure to dietborne As leads to pronounced physiological and biochemical alterations in apple snails. Total protein levels decreased by 24.06 %, superoxide dismutase (SOD) activity decreased by 24.43 %, malondialdehyde (MDA) content increased by 47.51 %, glutathione (GSH) content decreased by 46.99 %, and glutathione S-transferase (GST) activity decreased by 42.22 %. Furthermore, the subcellular-level results indicated that dietborne As exposure altered subcellular distribution in the liver. Additionally, dietborne As exposure significantly reduced the abundance of gut microbiota in apple snails.

7.
ACG Case Rep J ; 11(9): e01482, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39238884

ABSTRACT

Acute pancreatitis, a common gastrointestinal ailment in the United States, often lacks a clear etiology, with one-third of cases deemed idiopathic. We discuss an 84-year-old woman with acute pancreatitis possibly linked to a recently introduced weight loss supplement containing apple cider vinegar. Literature review unveils scant data regarding the risks of acute pancreatitis associated with less rigorously studied and regulated supplements, such as apple cider vinegar products. Considering the morbidity and financial burden associated with acute pancreatitis, there is a pressing need to report and disseminate awareness of diverse etiologies, encompassing drug and supplement-induced cases. This case report endeavors to address this need.

8.
Plant Cell Environ ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279496

ABSTRACT

Nitrogen (N) is crucial for plant growth and development. Exogenous dopamine has been shown to improve the N-deficiency tolerance of apple. However, the potential regulatory mechanisms by which dopamine mitigates low-N stress remain unclear. Our data indicated that the dopamine levels in apple (Malus domestica) were elevated by the overexpression (OE) of MdTYDC, which encodes tyrosine decarboxylase, a key enzyme in dopamine biosynthesis. The photosynthetic capacity of the OE lines was enhanced, and the root system was more extensive under low-N stress compared with the wild-type (WT) plants. This enhancement contributed to a greater net nitrate influx at the root surface in the OE lines compared with the WT. Transcriptomic and carbohydrate analyses suggested that the OE of MdTYDC in apple enhanced N-deficiency tolerance by promoting the expression of carbohydrate-related genes, which increased the content of soluble sugars and sorbitol. Both exogenous dopamine and MdTYDC OE activated the expression of MdORG2 (a bHLH transcription factor), which, in turn, directly binds to the promoter of MdTYDC, activating its expression, increasing dopamine levels, and consequently conferring strong low-N tolerance in apple. Thus, this reveals the molecular pathways by which dopamine regulates low-N tolerance in apple through pathways involving MdTYDC and MdORG2.

9.
Food Chem X ; 23: 101768, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39280211

ABSTRACT

This study explored the impact of three packaging materials (wooden boxes, corrugated fiber boxes, shrink-wrapped boxes) combined with two ethylene scrubbers (1-MCP, KMnO4) on the shelf life of Golden Delicious apples. While previous research has extensively studied the effects of packaging and ethylene inhibitors independently, the novelty of this work lies in its combined evaluation of these factors under ambient storage conditions over an extended period of 160 days. The study specifically addresses a research gap by directly comparing the efficacy of 1-MCP and KMnO4 within different packaging environments, offering insights into their combined influence on key quality parameters such as firmness, juice yield, rot incidence, physiological loss in weight (PLW), acidity, and total soluble solids (TSS). Findings revealed that 1-MCP-treated apples, particularly when shrink-wrapped, experienced minimal reductions in firmness and juice yield, with significantly lower rot incidence and physiological loss in weight (PLW) compared to KMnO4-treated and control apples. Additionally, while acidity and juice content naturally declined over time, and TSS initially increased before decreasing, 1-MCP-treated apples exhibited more stable quality attributes. The study also noted a slower decline in organoleptic quality with 1-MCP and shrink-wrap packaging. The research concludes that the combination of 1-MCP treatment and shrink-wrap packaging most effectively extends the shelf life of Golden Delicious apples, highlighting the importance of integrated approaches to post-harvest management. This study provides a novel framework for improving storage techniques, particularly for ambient conditions where shelf life extension is most challenging.

10.
Plant Dis ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283270

ABSTRACT

Glomerella leaf spot (GLS), Glomerella fruit rot (GFR) and apple bitter rot (ABR), caused by Colletotrichum spp. are amongst the most devastating apple diseases in the southeastern United States. While several species have been identified as causal pathogens of GLS, GFR, and ABR, their relative frequency and fungicide sensitivity status in the southeastern U.S. is unknown. In total, 381 Colletotrichum isolates were obtained from symptomatic leaves and fruit from 18 conventionally managed apple orchards and two baseline populations in western North Carolina and Georgia in 2016 and 2017. Multilocus DNA sequence analysis revealed that C. chrysophilum was the predominant cause of GLS and GFR, and C. fioriniae was the causal agent of ABR. Baseline and commercial populations of Colletotrichum spp. were evaluated for sensitivity to pyraclostrobin and trifloxystrobin and no statistical differences in sensitivity between the two species were observed for conidial germination. However, EC50 values were significantly lower for C. fioriniae compared to C. chrysophilum for both fungicides regarding mycelial inhibition. Isolates recovered from commercial orchards revealed that 5 populations of C. chrysophilum and 1 population of C. fioriniae had reduced sensitivity to trifloxystrobin, and 1 C. fioriniae population had reduced sensitivity to pyraclostrobin via conidial germination assays. The cytb gene for 27 isolates of C. fioriniae, C. chrysophilum, and C. fructicola with different QoI sensitivities revealed the G143A mutation in a single isolate of C. chrysophilum with insensitivity to both fungicides. Results of these studies suggest that two Colletotrichum spp. predominantly cause GLS and ABR in the southeastern U.S. and that a reduction in sensitivity to some QoI fungicides may be responsible for control failures. This study also provides basis for monitoring shifts in QoI sensitivity in Colletotrichum spp. causing disease on apple in the southeastern U.S.

11.
Pestic Biochem Physiol ; 204: 106105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277409

ABSTRACT

The invasive golden apple snail Pomacea canaliculata is one of the devastating threats to aquatic ecosystems and wetland agriculture worldwide. Macrolides from microbes display various advantages over other compounds in controlling snails. However, emergence of antibiotic-resistant phenotypes against certain macrolides in the field appeals for exploring more effectively molluscicidal macrolides. Here, two borrelidins, borrelidin BN1 and BN2, from the extract of a Streptomyces strain fermentation were evaluated for molluscicidal potential against P. canaliculata using both immersion and contact bioassay methods. Borrelidin BN1 (borrelidin A) presented a significant molluscicidal activity comparable to the chemical pesticide metaldehyde, and had a much lower median lethal concentration value (LC50, 522.984 µg·ml-1) than avermectin B1 at 72 h of contact-killing treatment. Snail growth was inhibited by borrelidin BN1 more than by metaldehyde at sublethal concentrations, consistent with responses of key biochemical parameters. Exposure to borrelidin BN1 decreased the activity of acetylcholinesterase (AChE), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as the levels of energy reserves and sex steroids in snail tissues, while increased the activity of superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH) and the level of lipid peroxidation (LPO). Further application assay confirmed that borrelidin BN1 protected crop plant Zizania latifolia from P. canaliculata damage via suppressing snail population density. These findings suggest great potential of borrelidin BN1 as a molluscicide. Additionally, its higher activity than the stereoisomeric borrelidin BN2 (borrelidin F) implied better molluscicidal borrelidins could be acquired through structural optimization.


Subject(s)
Molluscacides , Snails , Animals , Molluscacides/pharmacology , Snails/drug effects , Acetylcholinesterase/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , Streptomyces/metabolism , Glutathione Transferase/metabolism , Introduced Species , Acetaldehyde/analogs & derivatives , Fatty Alcohols
12.
Sci Rep ; 14(1): 20884, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39242639

ABSTRACT

The nitrogen content of apple leaves and jujube leaves is an important index to judge the growth and development of apple trees and jujube trees to a certain extent. The prediction performance of the two samples was compared between different models for leaf nitrogen content, respectively. The near-infrared absorption spectra of 287 apple leaf samples and 192 jujube leaf samples were collected. After eliminating the outliers by Mahalanobis distance method, the remaining spectral data were processed by six different preprocessing methods. BP neural network (BP), random forest regression (RF), least partial squares (PLS), K-Nearest Neighbor (KNN), and support vector regression (SVR) were compared to establish prediction models of nitrogen content in apple leaves and jujube leaves. The results showed that the determination coefficient (R2), root mean square error (RMSE) and residual prediction deviation (RPD) of the models established by different combined pretreatment methods were compared among the five methods. Compared with the performance of the other four models, the modeling method of SG + SD + CARS + RF was suitable for the prediction of nitrogen content in apple leaves, and its modeling set R2 was 0.85408, RMSE was 0.082188, and RPD was 2.5864. The validation set R2 is 0.75527, RMSE is 0.099028, RPD is 2.1956. The modeling method of FD + CARS + PLS was suitable for the prediction of nitrogen content in jujube leaves. The modeling set R2 was 0.7954, RMSE was 0.14558, and RPD was 2.4264; the validation set R2 is 0.81348, RMSE is 0.089217, and RPD is 2.4552.In the prediction modeling of apple leaf nitrogen content in the characteristic band, the model quality of RF was better than the other four prediction models. The model quality of PLS in predictive modeling of nitrogen content of jujube leaves in characteristic bands is superior to the other four predictive models, These results provide a reference for the use of near-infrared spectroscopy to determine whether apple trees and jujube trees are deficient in nutrients.


Subject(s)
Malus , Nitrogen , Plant Leaves , Spectroscopy, Near-Infrared , Ziziphus , Malus/metabolism , Malus/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Ziziphus/metabolism , Ziziphus/chemistry , Nitrogen/metabolism , Nitrogen/analysis , Spectroscopy, Near-Infrared/methods , Least-Squares Analysis , Neural Networks, Computer
13.
Carbohydr Polym ; 344: 122547, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218562

ABSTRACT

Low methyl pectin, conventionally extruded as sols and shaped through Ca2+ post-curing, face complexity and high production costs, limiting their application in 3D printing. We developed apple pectin (AP) vitrimer inks with shear-thinning behavior at elevated temperatures and self-supporting properties at low ones, via pectin methyl esterase (PME) modification and K+ induction, aiming to facilitate simpler extrusion 3D printing. PME-modified AP (PME-AP) exhibits a higher affinity for K+ compared to AP, attributed to an 8.76 % reduction in the degree of methyl esterification and a 9.72 % increase in the degree of blockiness. Consequently, 1 % PME-AP forms a robust hydrogel vitrimer characterized by a hardness of 121.33 g and a water holding capacity of 99.50 % at 150 mM K+, a 68 % reduction in K+ concentration requirement over AP gels. Through electrostatic shielding, K+ induces hydrogen-bonded crosslinked vitrimers with stress relaxation within 53 s at 80 °C and self-healing properties with minimal texture reduction (~2 g). These characteristics suggest that the hydrogen bond crosslinked vitrimer network can dynamically reorganize in response to temperature variations, making PME-AP gel ideal for 3D printing applications. This study establishes the groundwork for cost-efficient AP-based extrusion 3D printing.

14.
Food Res Int ; 194: 114940, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232550

ABSTRACT

Hyperspectral microscope imaging (HMI) technique was employed to assess the changes in physicochemical parameters and microstructure of 'Golden Delicious' apples flesh during storage. Four regions of interest (ROIs), including whole-cell ROI, intercellular space ROI, cytoplasm ROI, and cell wall ROI were investigated to assess their relationships with physicochemical parameters. Different ROIs presented similar vibrational profiles, but with slight differences in spectral intensity, especially in the range of 800-1000 nm. Spectral angle mapper (SAM) was applied to the HMI of apple tissues at different storage stages to clearly show the structural changes of parenchyma cells, while principal component analysis (PCA) could highlight the distribution of sugars, water and pigments in apple flesh at the cellular scale. Simultaneously with the degradation of acid-soluble pectin (ASP), middle lamella dissolution and increased intercellular space were observed using SEM and TEM. Single feature variables were used to construct linear models based on pearson correlation analysis, with R2 of 0.96 for moisture at 982 nm, 0.85 for water-soluble pectin (WSP) at 420 nm, 0.82 for L* at 946 nm, 0.77 for soluble solids content (SSC) at 484 nm, and 0.66 for firmness at 490 nm. This work demonstrated the great potential of HMI technology as a fast, accurate and efficient solution for assessing the quality of 'Golden Delicious' apples.


Subject(s)
Fruit , Hyperspectral Imaging , Malus , Pectins , Malus/chemistry , Fruit/chemistry , Hyperspectral Imaging/methods , Pectins/chemistry , Pectins/analysis , Principal Component Analysis , Microscopy/methods , Food Storage/methods , Microscopy, Electron, Scanning , Cell Wall/chemistry
15.
Environ Monit Assess ; 196(10): 905, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243344

ABSTRACT

The apple orchards in Liaoning, one of the four major apple-producing areas in Bohai Bay, Northeast China, play a crucial role in regulating the carbon sink effect. However, there is limited information on the variation in carbon flux and its influential factors in apple orchards in this region. To address this, CO2 flux data were monitored throughout the entire apple growth seasons from April to November in 2017 and 2018 in the apple (Malus pumila Mill. cv Hanfu) orchard in Shenyang, China. The energy closure of the apple orchard was calculated, and variations in net ecosystem exchange (NEE) at different time scales and its response to environmental factors were analyzed. Our results showed that the energy balance ratio of the apple was 0.74 in 2017 and 1.38 in 2018. NEE was generally positive in April and November and negative from May to October, indicating a strong carbon sink throughout the growth season. The daily average NEE ranged from - 0.103 to 0.094 mg m-2 s-1 in 2017 and from - 0.134 to 0.059 mg m-2 s-1 in 2018, with the lowest values observed in June and July. NEE was negatively correlated with net radiation, atmospheric temperature, saturated vapor pressure deficit, and soil temperature. These findings provide valuable insights for predicting carbon flux in orchard ecosystems within the context of global climate change.


Subject(s)
Carbon Dioxide , Ecosystem , Environmental Monitoring , Malus , Malus/growth & development , China , Carbon Dioxide/analysis , Carbon Sequestration , Seasons , Air Pollutants/analysis , Soil/chemistry , Carbon Cycle , Agriculture
16.
Food Chem ; 463(Pt 1): 141140, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39243626

ABSTRACT

This study evaluated the inhibitory impacts of phytic acid on the growth of T. roseum both in vitro and in apple fruit, as well as elucidated the potential mechanisms underlying its action. Results showed that phytic acid suppressed the lesion diameter caused by T. roseum inoculation in apples, as well as spore germination and mycelial growth of T. roseum in vitro. Phytic acid reduced intracellular conductivity and soluble sugar content, while increasing malondialdehyde and soluble protein contents. Phytic acid treatment inhibited the activities of pectin lyase, pectin methyl polygalacturonase, ß-glucosidase, cellulase, xylanase, pectin methyl trans-eliminase, polygalacturonase, and polygalacturonase both in vitro and in apples. In contrast, inoculation of control and phytic acid-treated fruit with T. roseum resulted in increased enzyme activity. These findings suggest that phytic acid decrease the occurrence of heart rot in apples through inducing disruption of the cell membrane of T. roseum and mediating cell wall metabolism.

17.
Microbiol Res ; 289: 127897, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39243684

ABSTRACT

Melatonin administration is an environmentally effective strategy to mitigate apple replant disease (ARD), but its mechanism of action is unknown. This study investigated the protective effect of melatonin on ARD and the underlying mechanism. In field experiments, melatonin significantly reduced phloridzin levels in apple roots and rhizosphere soil. A correlation analysis indicated that a potential antagonistic interaction between melatonin and phloridzin was crucial for improving soil physicochemical properties, increasing the diversity of endophytic bacterial communities in roots of apple seedlings, and promoting mineral element absorption by the plants. Melatonin also reduced the abundance of Fusarium in roots. The ability of melatonin to reduce phloridzin levels both in soil and in plants was also demonstrated in a pot experiment. Azovibrio were specifically recruited in response to melatonin and their abundance was negatively correlated with phloridzin levels. Fusarium species that have a negative impact on plant growth were also inhibited by melatonin. Our results show that melatonin improves the rhizosphere environment as well as the structure of the endophytic microbiota community, by reducing phloridzin levels in rhizosphere soil and roots. These regulatory effects of melatonin support its use to improve the physiological state of plants under ARD conditions and thereby overcome the barriers of perennial cropping systems.

18.
G3 (Bethesda) ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39288023

ABSTRACT

Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation quality. Whole genome sequence and annotation gives breeders, researchers, and growers information about cultivar specific traits such as fruit quality and disease resistance, and informs strategies to enhance postharvest storage. Here we present a haplotype-phased, chromosomal level genome of Malus domestica, 'WA 38', a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using both short and long read sequencing data with a k-mer based approach, chromosomes originating from each parent were assembled and segregated. This is the first pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are identified and separated into their unique, respective haplomes. The two haplome assemblies, 'Honeycrisp' originated HapA and 'Enterprise' originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to 'Gala', 'Honeycrisp', and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This assembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes 'WA 38' (Washington State University), 'd'Anjou' pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All software is containerized, offering a simple implementation of the workflow.

19.
J Nutr Sci Vitaminol (Tokyo) ; 70(4): 359-363, 2024.
Article in English | MEDLINE | ID: mdl-39218698

ABSTRACT

Ascorbic acid is essential for human health. As this vitamin is water-soluble, it cannot be stored in the body for a long time and is easily excreted in urine; therefore, it is necessary to ingest it in sufficient amounts every day. The fact that apples retain ascorbic acid in human bodies are known; however, this has not been experimentally demonstrated/documented. In this study, to clarify the effect of apple juice ingestion on the urinary excretion of ascorbic acid, we compared urinary ascorbic acid excretion in healthy women administered ascorbic acid alone or with apple juice. The experimental design was an unblinded randomized crossover study. Subjects ingested ascorbic acid in apple juice or ascorbic acid with water. Urine was collected after ingestion, and urinary ascorbic acid was measured. When ascorbic acid was ingested with apple juice, urinary excretion of ascorbic acid was significantly suppressed compared to when ascorbic acid was ingested alone. This suggests that apple juice intake can help retain ascorbic acid in the body.


Subject(s)
Ascorbic Acid , Fruit and Vegetable Juices , Malus , Adult , Female , Humans , Young Adult , Ascorbic Acid/urine , Ascorbic Acid/administration & dosage , Cross-Over Studies , East Asian People , Japan
20.
Plant Sci ; 349: 112267, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278570

ABSTRACT

Salinity stress is a significant environmental factor that impacts the growth, development, quality, and yield of crops. The 2OG-Fe (II) oxygenase family of enzyme proteins plays crucial roles in plant growth and stress responses. Previously, we identified and characterized MdCo, which encodes a putative 2OG-Fe (II) oxygenase, a key gene for controlling the columnar growth habit of apples. In this study, we explored the role of MdCo in salt stress tolerance. Expression analysis suggested that MdCo exhibits high expression in roots and is significantly induced by NaCl stress. Ectopic expression of MdCo exhibited enhanced salt stress tolerance in transgenic tomatoes, and these plants were characterized by better growth performance, and higher chlorophyll content, but lower electrolyte leakage and malondialdehyde (MDA), and less hydrogen peroxide (H2O2) and superoxide radicals (O2-) under salt stress. Overexpression of MdCo can effectively scavenge reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes and up-regulating the expression of stress-associated genes under salt stress, thereby enhancing salt tolerance in apple calli. Collectively, these findings provide new insights into the function of MdCo in salt stress tolerance as well as future potential application for apple breeding aimed at improving salt stress tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL