Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 754
Filter
1.
PNAS Nexus ; 3(7): pgae256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010940

ABSTRACT

Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations. Here, we study the role of plasmodesmal permeability in cotton fiber growth, a type of cell that increases in length by at least three orders of magnitude in a few weeks. We incorporated plasmodesma-dependent movement of water and solutes into a classical model of plant cell expansion. We performed a sensitivity analysis to changes in values of model parameters and found that plasmodesmal permeability is among the most important factors for building up turgor pressure and expanding cotton fibers. Moreover, we found that nonmonotonic behaviors of turgor pressure that have been reported previously in cotton fibers cannot be recovered without accounting for dynamic changes of the parameters used in the model. Altogether, our results suggest an important role for plasmodesmal permeability in the regulation of turgor pressure.

2.
Plants (Basel) ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891309

ABSTRACT

Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.

3.
Tissue Cell ; 89: 102448, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38917601

ABSTRACT

OBJECTIVE: Our study aimed to compare aquaporin profiles in advanced and early passage bone marrow-derived mesenchymal stem cells (BM-MSCs) and assess the impact of aquaporin changes after adipogenic differentiation. Aquaporins are crucial for stem cell survival and differentiation during their life cycle. We focused on the role of aquaporins in the cell structures of advanced and early passage stem cells. METHODS: In our study, BM-MSCs were used for our objectives. Characterization of the cells was evaluated via flow cytometry using stem cell surface markers. The characterized BM-MSCs were divided into control and differentiation groups at passages 3 (P3) and 8 (P8). AQP1, AQP3, AQP7, AQP9, and AQP10 expression levels on days 0, 1, 3, 7, 14, and 21 were evaluated using Real Time-PCR, ELISA, and immunofluorescence studies. RESULTS: The cells were characterized by flow cytometry and confirmed to exhibit BM-MSC characteristics. At P3 and P8, differentiation was initiated, and AQP protein expression was observed to initially increase and then decrease on subsequent days. The increase in AQP protein expression at P3 occurred earlier than that at P8. Gene expression analysis demonstrated a statistically significant increase in AQP gene expression on days when AQP protein expression decreased. Moreover, statistical differences were observed between late and early passage AQP profiles. CONCLUSION: Our study examined the composition of AQPs in BM-MSCs in association with cell passage, and found that AQPs play a role in the differentiation process. The connection between the AQP profile and aging might be related to differentiation capacity, which could have implications for slowing down cellular aging and developing new therapeutic approaches.

4.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892245

ABSTRACT

Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Salt Tolerance , Solanum , Salt Tolerance/genetics , Solanum/genetics , Solanum/metabolism , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Genetic Linkage , Genes, Plant
5.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928364

ABSTRACT

Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes since it is initially characterized by the absence of specific biomarkers and corresponding targeted therapies. Advances in methodology, translational informatics, genomics, and proteomics have significantly contributed to the identification of therapeutic targets. The development of innovative treatments, such as antibody-drug conjugates and immune checkpoint inhibitors, alongside chemotherapy, has now become the standard of care. However, the quest for biomarkers defining therapy outcomes is still ongoing. Peroxiporins, which comprise a subgroup of aquaporins, which are membrane pores facilitating the transport of water, glycerol, and hydrogen peroxide, have emerged as potential biomarkers for therapy response. Research on peroxiporins reveals their involvement beyond traditional channeling activities, which is also reflected in their cellular localization and roles in cellular signaling pathways. This research on peroxiporins provides fresh insights into the mechanisms of therapy resistance in tumors, offering potential avenues for predicting treatment outcomes and tailoring successful TNBC therapies.


Subject(s)
Biomarkers, Tumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Biomarkers, Tumor/metabolism , Female , Aquaporins/metabolism , Signal Transduction , Animals
6.
Hum Cell ; 37(4): 917-930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806940

ABSTRACT

Aquaporins (AQPs) are small, integral proteins facilitating water transport across plasma cell membranes in response to osmotic gradients. This family has 13 unique members (AQP0-12), which can also transport glycerol, urea, gases, and other salute small molecules. AQPs play a crucial role in the regulation of different cellular processes, including metabolism, migration, immunity, barrier function, and angiogenesis. These proteins are found to aberrantly overexpress in various cancers, including colorectal cancer (CRC). Growing evidence has explored AQPs as a potential diagnostic biomarker and therapeutic target in different cancers. However, there is no comprehensive review compiling the available information on the crucial role of AQPs in the context of colorectal cancer. This review highlights the significance of AQPs as the biomarker and regulator of tumor cells metabolism. In addition, the proliferation, angiogenesis, and metastasis of tumor cells related to AQPs expression as well as function are discussed. Understanding the AQPs prominent role in chemotherapy resistance is of great importance clinically.


Subject(s)
Aquaporins , Carcinogenesis , Colorectal Neoplasms , Drug Resistance, Neoplasm , Neoplasm Metastasis , Neovascularization, Pathologic , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Aquaporins/metabolism , Aquaporins/physiology , Carcinogenesis/metabolism , Carcinogenesis/genetics , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Gene Expression/genetics , Molecular Targeted Therapy
7.
Plant Physiol Biochem ; 211: 108680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701606

ABSTRACT

Fruit crops are frequently subjected to biotic and abiotic stresses that can significantly reduce the absorption and translocation of essential elements, ultimately leading to a decrease in crop yield. It is imperative to grow fruits and vegetables in areas prone to drought, salinity, and extreme high, and low temperatures to meet the world's minimum nutrient demand. The use of integrated approaches, including supplementation of beneficial elements like silicon (Si), can enhance plant resilience under various stresses. Silicon is the second most abundant element on the earth crust, following oxygen, which plays a significant role in development and promote plant growth. Extensive efforts have been made to explore the advantages of Si supplementation in fruit crops. The application of Si to plants reinforces the cell wall, providing additional support through enhancing a mechanical and biochemical processes, thereby improving the stress tolerance capacity of crops. In this review, the molecular and physiological mechanisms that explain the beneficial effects of Si supplementation in horticultural crop species have been discussed. The review describes the role of Si and its transporters in mitigation of abiotic stress conditions in horticultural plants.


Subject(s)
Crops, Agricultural , Silicon , Stress, Physiological , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fruit/metabolism , Fruit/growth & development
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731801

ABSTRACT

Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.


Subject(s)
Medicago truncatula , Plant Leaves , Pulvinus , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/growth & development , Medicago truncatula/physiology , Medicago truncatula/metabolism , Medicago truncatula/genetics , Medicago truncatula/growth & development , Pulvinus/metabolism , Movement , Water/metabolism , Gene Expression Regulation, Plant , Mimosa/physiology , Mimosa/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Front Cell Neurosci ; 18: 1414662, 2024.
Article in English | MEDLINE | ID: mdl-38818518

ABSTRACT

Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.

10.
Adv Clin Exp Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819938

ABSTRACT

BACKGROUND: Liqi Tongbian is a traditional Chinese medicine (TCM) preparation that contains herbs that may treat slow transit constipation (STC). Atractylodes macrocephala, Astragalus membranaceus, Fructus aurantii, radish seed, uncooked Polygonum multiflorum, and Agastache rugosa were included in the formula for their unique qualities. The control of water transfer in the colon is greatly influenced by aquaporin 3 (AQP3). OBJECTIVES: Based on this, the Liqi Tongbian mixture was used to detect the concentrations of aquaporins (AQPs), 5-HT and nitrix oxide synthase 1 (NOS1) in STC rats, and explore its effect, in order to provide a theoretical basis for the remedy of STC with TCM. MATERIAL AND METHODS: Zhejiang University of Traditional Chinese Medicine provided 32 three-week-old Sprague Dawley rats of SPF-grade. The pairs licensed under SYXK (Zhejiang) 2021-0012 were kept at 20-25°C and humidity of 50-65%. The compound diphenoxylate caused constipation in the control, model, Liqi laxative (LQTB), and mosapride groups. The Liqi laxative rats were administered a mixture of traditional Chinese herbs after modeling, while mosapride was given to the other group. The levels of 5-HT, NOS1 and AQPs were tested in the feces and intestinal tissues. RESULTS: Comparing the condition of rat feces, it was found that the model group had significantly lower overall bulk, score and particles within 24 h compared to the control group. In comparison to mosapride, LQTB performed better. The model group had higher levels of 5-HT and NOS1 in intestinal tissue, while the LQTB and mosapride groups had decreased levels of these AQPs. LQTB had lower levels of AQP1, AQP3 and AQP4 than mosapride, while the model group had higher levels of these AQPs. CONCLUSIONS: Liqi Tongbian mixture works better than mosapride in improving constipation symptoms in rats with STC, and its mechanism is related to regulating the level of intestinal AQPs and neurotransmitters.

11.
Heliyon ; 10(10): e31532, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38807874

ABSTRACT

Background: Restoration of blood supply is a desired goal for the treatment of acute ischemic stroke. However, the restoration often leads to cerebral ischemia-reperfusion injury (CIR/I), which greatly increases the risk of non-neural organ damage. In particular, the acute kidney injury might be one of the most common complications. Aims: The study aimed to understand the damage occurred and the potential molecular mechanisms. Methods: The study was explored on the CIR/I rats generated by performing middle cerebral artery occlusion/reperfusion (MCAO/Reperfusion). The rats were evaluated with injury on the brains, followed by the non-neural organs including kidneys, livers, colons and stomachs. They were examined further with histopathological changes, and gene expression alterations by using RT-qPCR of ten aquaporins (Aqps) subtypes including Aqp1~Aqp9 and Aqp11. Furthermore, the Aqps expression profiles were constructed for each organ and analyzed by performing Principle Component Analysis. In addition, immunohistochemistry was explored to look at the protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 in the rat kidneys. Results: There was a prominent down-regulation profile in the MCAO/Reperfusion rat kidneys. The protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 was decreased in the kidneys of the MCAO/Reperfusion rats. We suggested that the kidney was in the highest risk to be damaged following the CIR/I. Down-regulation of Aqp2, Aqp3 and Aqp4 was involved in the acute kidney injury induced by the CIR/I.

12.
Biol Cell ; 116(6): e2470003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653736

ABSTRACT

BACKGROUND INFORMATION: Aquaporins are H2O-permeable membrane protein pores. However, some aquaporins are also permeable to other substances such as CO2. In higher plants, overexpression of such aquaporins has already led to an enhanced photosynthetic performance due to improved CO2 mesophyll conductance. In this work, we investigated the effects of such aquaporins on unicellular photosynthetically active organisms, specifically cyanobacteria. RESULTS: Overexpression of aquaporins NtAQP1 or hAQP1 that might have a function to improve CO2 membrane permeability lead to increased photosynthesis rates in the cyanobacterium Synechococcus sp. PCC7002 as concluded by the rate of evolved O2. A shift in the Plastoquinone pool state of the cells supports our findings. Water permeable aquaporins without CO2 permeability, such as NtPIP2;1, do not have this effect. CONCLUSIONS AND SIGNIFICANCE: We conclude that also in single cell organisms like cyanobacteria, membrane CO2 conductivity could be rate limiting and CO2-porins reduce the respective membrane resistance. We could show that besides the tobacco aquaporin NtAQP1 also the human hAQP1 most likely functions as CO2 diffusion facilitator in the photosynthesis assay.


Subject(s)
Aquaporins , Nicotiana , Photosynthesis , Synechococcus , Synechococcus/metabolism , Nicotiana/metabolism , Humans , Aquaporins/metabolism , Aquaporins/genetics , Carbon Dioxide/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
13.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Article in English | MEDLINE | ID: mdl-38615445

ABSTRACT

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Subject(s)
Arsenic , Arsenites , Oryza , Plant Proteins , Plant Roots , Plant Shoots , Plants, Genetically Modified , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Arsenic/metabolism , Plant Shoots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Gene Expression Regulation, Plant/drug effects , Biological Transport/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics
14.
Biol Trace Elem Res ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589680

ABSTRACT

Diabetes increases the likelihood of germ cell damage, hypogonadism, and male infertility. Diabetes leads to lower zinc (Zn) levels, an important micronutrient for maintaining male fertility, and zinc deficiency can lead to decreased male fertility through multiple mechanisms. The aim of this study was to investigate the effect of combined metformin and zinc administration on epididymis in diabetic mice; 10 of 50 male mice were randomly selected as the control group (group C), and the remaining 40 mice were randomly divided into untreated diabetes group (group D), diabetes + zinc group (group Z), diabetes + metformin group (group M), and diabetes + metformin + zinc group (group ZM) with 10 mice each. Diabetic mice in group Z received oral zinc (10 mg/kg) once daily for 4 weeks; diabetic mice in group M received oral metformin (200 mg/kg) once daily for 4 weeks; diabetic mice in group ZM received oral metformin and zinc once daily for 4 weeks; and groups C and D received the same amount of sterile water by gavage. Overnight fasted mice were sacrificed, and blood samples, mouse epididymides, and sperm were collected for further experiments. In group D, fasting blood glucose and insulin resistance index increased significantly, semen quality, serum insulin, and testosterone decreased, and epididymal structure was disordered. In group D, epididymal tissue zinc, free zinc ions in the caput, and cauda of epididymis and zinc transporter (ZnT2) decreased significantly, while ZIP12, metallothionein (MT), and metal transcription factor (MTF1) increased significantly. In addition, the expressions of blood-epididymal barrier (BEB)-related molecules (including ZO-1 ß-catenin and N-cadherin) and aquaporins (AQPs, including AQP3, AQP9, and AQP11) in the epididymis of mice in group D were significantly decreased. In addition, compared with groups D, Z, and M, in the ZM group, the expression of BEB-related molecules (including ZO-1, ß-catenin, and N-cadherin) and aquaporins (AQP3, AQP9, and AQP11) in epididymis tissue were significantly increased, and sperm motility and serum testosterone were significantly increased. It was concluded that male diabetic mice have a disturbed epididymal structure and decreased semen quality by causing an imbalance in epididymal zinc homeostasis, BEB, and impaired absorptive function. The combination of zinc and metformin is an effective and safe alternative treatment and provides additional benefits over metformin alone.

15.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612752

ABSTRACT

Excessive sodium intake is associated with nephrolithiasis, but the impact of sodium-deficient (SD) diets is unknown. Hence, we investigated the effects of short- and long-term SD diets on the expression of renal aquaporins and sodium transporters, and thus calcium oxalate (CaOx) crystal formation in hyperoxaluria rats. In a short-term sodium balance study, six male rats received drinking water and six received 0.75% ethylene glycol (EG) to induce hyperoxaluria. After a 30-day period of feeding on normal chow, both groups were treated with a normal-sodium diet for 5 days, followed by a sodium-free diet for the next 5 days. In a long-term SD study (42 days), four groups, induced with EG or not, were treated with normal-sodium water and sodium-free drinking water, alternately. Short-term sodium restriction in EG rats reversed the daily positive sodium balance, but progressively caused a negative cumulative water balance. In the long-term study, the abundant levels of of Na/H exchanger, thiazide-sensitive Na-Cl cotransporter, Na-K-ATPase, and aquaporins-1 from SD + EG rats were markedly reduced, corresponding to a decrease in Uosm, as compared to SD rats. Increased urine calcium, AP(CaOx)index, and renal CaOx deposition were also noted in SD + EG rats. Although the SD treatment reduced sodium excretion, it also increased urinary calcium and impaired renal function, ultimately causing the formation of more CaOx crystals.


Subject(s)
Drinking Water , Hypercalcemia , Hyperoxaluria , Hyponatremia , Male , Animals , Rats , Sodium , Calcium Oxalate , Calcium , Kidney
16.
J Agric Food Chem ; 72(17): 10149-10161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635353

ABSTRACT

The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to >40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices.


Subject(s)
Aquaporins , Germination , Hordeum , Plant Proteins , Seeds , Water , Hordeum/metabolism , Hordeum/genetics , Hordeum/chemistry , Hordeum/growth & development , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Water/metabolism , Seeds/metabolism , Seeds/chemistry , Seeds/growth & development , Seeds/genetics , Plant Breeding , Edible Grain/metabolism , Edible Grain/chemistry , Edible Grain/growth & development , Edible Grain/genetics , Proteomics
17.
Theriogenology ; 223: 29-35, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38663138

ABSTRACT

The freeze-thawing process induces osmotic changes that may affect the membrane domain location of aquaporins' (AQP) in spermatozoa. Recent studies suggest that changes in AQP3 localization allows better sperm osmo-adaptation, improving the cryoresistance. Ultra-rapid freezing is an alternative cryopreservation technique that requires less equipment than conventional freezing, and it is faster, simpler and can be used in the field. This study aimed to determine the influence of freezing-thawing rates (slow (control) vs. ultra-rapid) on AQP3 expression and location in the spermatozoa from small ruminants (sheep and goats) and its relationship with sperm cryo-damage. Spermatozoa were collected from 10 Merino rams and 10 Murciano-Granadina bucks. The presence and distribution of AQP3 were assessed by Western blotting and immunocytochemistry (ICC), employing a commercial rabbit polyclonal antibody. Sperm motility was CASA system-analyzed, and membrane and acrosome integrity assessed by fluorescence (PI/PNA-FITC). Western blotting did not detect a significant effect of freezing-thawing rate on the amount of AQP3 while ICC found freezing-thawing rate affecting AQP3 location (P < 0.05). In both species, the percentages of spermatozoa showing AQP3 in the post-acrosome region, mid-piece, and principal piece of the tail were greater in samples cryopreserved by slow freezing-thawing (control) than ultra-rapid freezing-thawing rates (P < 0.05). Spermatozoa cryopreserved using ultra-rapid freezing-thawing showed decrease motility, plasma membrane, and acrosome integrity (P < 0.05), which might be related, at least in part, to a lower expression of AQP3. In conclusion, the cooling rate modifies the location of AQP3 in spermatozoa of sheep and goat, which might be associated with sperm cryosurvival.


Subject(s)
Aquaporin 3 , Cryopreservation , Goats , Semen Preservation , Spermatozoa , Animals , Male , Goats/physiology , Aquaporin 3/metabolism , Spermatozoa/physiology , Spermatozoa/metabolism , Cryopreservation/veterinary , Sheep/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Freezing , Sperm Motility
18.
Rev Alerg Mex ; 71(1): 56, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683074

ABSTRACT

OBJECTIVE: Conduct an in-silico assessment of potential molecular mimicry between human aquaporins, A. fumigatus, and diverse allergenic sources. METHODS: Amino acid sequences of human AQP3 and A. fumigatus aquaporin were compared through multiple alignments with 25 aquaporins from diverse allergenic sources. Phylogenetic analysis and homology-based modeling were executed, and the ElliPro server predicted conserved antigenic regions on 3D structures. RESULTS: Global identity among studied aquaporins was 32.6%, with a specific conserved local region at 71.4%. Five monophyletic clades (A-E) were formed, and Group B displayed the highest identity (95%), including 6 mammalian aquaporins, notably AQP3. A. fumigatus aquaporin exhibited the highest identity with Malassezia sympodialis (35%). Three linear and three discontinuous epitopes were identified in both human and A. fumigatus aquaporins. The Root Mean Square Deviation (RMSD) from overlapping aquaporin structures was 1.006. CONCLUSION: Identification of potential linear and conformational epitopes on human AQP3 suggests likely molecular mimicry with A. fumigatus aquaporins. High identity in a specific antigenic region indicates potential autoreactivity and a probable antigenic site involved in cross-reactivity. Validation through in vitro and in vivo studies is essential for further understanding and confirmation.


OBJETIVO: Realizar una evaluación in silico del posible mimetismo molecular entre las acuaporinas humanas, A. fumigatus y diversas fuentes alergénicas. MÉTODOS: Se compararon secuencias de aminoácidos de AQP3 humana y acuaporina de A. fumigatus mediante alineamientos múltiples con 25 acuaporinas de diversas fuentes alergénicas. Se ejecutaron análisis filogenéticos y modelos basados en homología, y el servidor ElliPro predijo regiones antigénicas preservadas en estructuras 3D. RESULTADOS: La identidad global entre las acuaporinas estudiadas fue del 32.6%, con una región local específica preservada en el 71.4%. Se formaron cinco clados monofiléticos (A-E), y el grupo B mostró la identidad más alta (95%), incluidas 6 acuaporinas de mamíferos, en particular AQP3. A. fumigatus aquaporin exhibió la mayor identidad con Malassezia sympodialis (35%). Se identificaron tres epítopos lineales y tres discontinuos en acuaporinas tanto humanas como de A. fumigatus. La desviación cuadrática media (RMSD) de las estructuras de acuaporinas superpuestas fue de 1,006. CONCLUSIÓN: La identificación de posibles epítopos lineales y conformacionales en AQP3 humano sugiere un probable mimetismo molecular con acuaporinas de A. fumigatus. La identidad alta en una región antigénica específica indica autorreactividad potencial y un sitio antigénico probable implicado en la reactividad cruzada. La validación mediante estudios in vitro e in vivo es desicivo para una mayor comprensión y confirmación.


Subject(s)
Allergens , Aquaporin 3 , Aquaporins , Aspergillus fumigatus , Computer Simulation , Molecular Mimicry , Aspergillus fumigatus/immunology , Humans , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/metabolism , Aquaporins/immunology , Aquaporin 3/metabolism , Aquaporin 3/genetics , Allergens/immunology , Hypersensitivity/immunology , Fungal Proteins/chemistry , Fungal Proteins/immunology , Fungal Proteins/genetics , Amino Acid Sequence , Phylogeny , Epitopes/immunology
19.
Chembiochem ; 25(10): e202400087, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38439618

ABSTRACT

The development of genetic reporters for magnetic resonance imaging (MRI) is essential for investigating biological functions in vivo. However, current MRI reporters have low sensitivity, making it challenging to create significant contrast against the tissue background, especially when only a small fraction of cells express the reporter. To overcome this limitation, we developed an approach for amplifying the sensitivity of molecular MRI by combining a chemogenetic contrast mechanism with a biophysical approach to increase water diffusion through the co-expression of a dual-gene construct comprising an organic anion transporting polypeptide, Oatp1b3, and a water channel, Aqp1. We first show that the expression of Aqp1 amplifies MRI contrast in cultured cells engineered to express Oatp1b3. We demonstrate that the contrast amplification is caused by Aqp1-driven increase in water exchange, which provides the gadolinium ions internalized by Oatp1b3-expressing cells with access to a larger water pool compared with exchange-limited conditions. We further show that our methodology allows cells to be detected using approximately 10-fold lower concentrations of gadolinium than that in the Aqp1-free scenario. Finally, we show that our approach enables the imaging of mixed-cell cultures containing a low fraction of Oatp1b3-labeled cells that are undetectable on the basis of Oatp1b3 expression alone.


Subject(s)
Aquaporin 1 , Genes, Reporter , Magnetic Resonance Imaging , Solute Carrier Organic Anion Transporter Family Member 1B3 , Water , Water/chemistry , Humans , Magnetic Resonance Imaging/methods , Aquaporin 1/metabolism , Aquaporin 1/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Gadolinium/chemistry , Contrast Media/chemistry , Contrast Media/metabolism , HEK293 Cells , Animals
20.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38451099

ABSTRACT

In addition to aquaporin (AQP) classes AQP1, AQP4 and AQP9 known to be expressed in mammalian brain, our recent transcriptomic analyses identified AQP0 and AQP11 in human cortex and hippocampus at levels correlated with age and Alzheimer's disease (AD) status; however, protein localization remained unknown. Roles of AQP0 and AQP11 in transporting hydrogen peroxide (H2O2) in lens and kidney prompted our hypothesis that up-regulation in brain might similarly be protective. Established cell lines for astroglia (1321N1) and neurons (SHSY5Y, differentiated with retinoic acid) were used to monitor changes in transcript levels for human AQPs (AQP0 to AQP12) in response to inflammation (simulated with 10-100 ng/ml lipopolysaccharide [LPS], 24 h), and hypoxia (5 min N2, followed by 0 to 24 h normoxia). AQP transcripts up-regulated in both 1321N1 and SHSY5Y included AQP0, AQP1 and AQP11. Immunocytochemistry in 1321N1 cells confirmed protein expression for AQP0 and AQP11 in plasma membrane and endoplasmic reticulum; AQP11 increased 10-fold after LPS and AQP0 increased 0.3-fold. In SHSY5Y cells, AQP0 expression increased 0.2-fold after 24 h LPS; AQP11 showed no appreciable change. Proposed peroxiporin roles were tested using melondialdehyde (MDA) assays to quantify lipid peroxidation levels after brief H2O2. Boosting peroxiporin expression by LPS pretreatment lowered subsequent H2O2-induced MDA responses (∼50%) compared with controls; conversely small interfering RNA knockdown of AQP0 in 1321N1 increased lipid peroxidation (∼17%) after H2O2, with a similar trend for AQP11 siRNA. Interventions that increase native brain peroxiporin activity are promising as new approaches to mitigate damage caused by aging and neurodegeneration.


Subject(s)
Aquaporins , Astrocytes , Eye Proteins , Neurons , Neuroprotection , Oxidative Stress , Humans , Aquaporins/genetics , Aquaporins/metabolism , Astrocytes/metabolism , Cell Line , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Lipopolysaccharides/pharmacology , Neurons/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...