Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1715: 464600, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38176352

ABSTRACT

An automated implementation for a subfractionation of mineral oil aromatic hydrocarbons (MOAH) into a mono-/di-aromatic fraction (MDAF) and a tri-/poly-aromatic fraction (TPAF) is presented, which is highly demanded by the European Food Safety Authority (EFSA) respecting the genotoxic and carcinogenic potential of MOAH. For this, donor-acceptor-complex chromatography (DACC) was used as a selective stationary phase to extend the conventional instrumental setup for the analysis of mineral oil hydrocarbons via on-line coupled liquid chromatography-gas chromatography-flame ionization detection (LC-GC-FID). A set of six new internal standards was introduced for the verification of the MOAH fractionation and a quantification of MDAF and TPAF, respectively. The automated DACC approach was applied to representative petrochemical references as well as to food samples, such as rice and infant formula, generally showing well conformity with results obtained by state-of-the-art analysis using two-dimensional GC (GCxGC). Relative deviations of DACC/LC-GC-FID compared to GCxGC-FID methods regarding the ≥ 3 ring MOAH content ranged between -50 and +6 % (median: -2 %, all samples, only values above limit of quantification). However, crucial deviations mainly result from "border-crossing" substances, e.g., dibenzothiophenes or partially hydrogenated MOAH. These substances can cause overestimations of ≥ 3 ring MOAH fraction during GCxGC analysis due to co-elution, which is mostly avoided using the DACC approach. Furthermore, the DACC approach can help to minimize underestimations of toxicologically relevant ≥ 3 ring MOAH caused by an unavoidable loss of MOAH during epoxidation, since natural olefins, such as terpenes, predominantly elute in MDAF, which was exemplarily shown for an olive oil and a terpene reference. The presented approach can be implemented easily in existing LC-GC-FID setup for an automated and advanced screening of MOAH to lower the need for elaborate GCxGC analysis also in routine environments.


Subject(s)
Hydrocarbons, Aromatic , Mineral Oil , Humans , Mineral Oil/analysis , Food Contamination/analysis , Hydrocarbons, Aromatic/analysis , Chromatography, Gas/methods , Chromatography, Liquid/methods , Hydrocarbons/analysis , Terpenes/analysis
2.
ACS Appl Mater Interfaces ; 15(17): 21306-21313, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37079770

ABSTRACT

Fused aromatic rings are widely employed in organic solar cell (OSC) materials due to their planarity and rigidity. Here, we designed and synthesized four two-dimensional non-fullerene acceptors, D6-4F, D6-4Cl, DTT-4F, and DTT-4Cl, based on two new fused planar ring structures of f-DTBDT-C6 and f-DTTBDT. Owing to the desirable phase separation formed in the blend films and the higher energy levels induced by the extra alkyl groups, PM6:D6-4F-based devices achieved a high VOC = 0.91 V with PCE = 11.10%, FF = 68.54%, and JSC = 17.75 mA/cm2. Because of the longer π-conjugation of the f-DTTBDT core with nine fused rings, DTT-4F and DTT-4Cl showed high molar extinction coefficients and broad absorption bands that enhanced the current density of OSCs. Finally, the PM6:DTT-4F-based devices achieved a JSC = 19.82 mA/cm2 with PCE = 9.68%, VOC = 0.83 V, and FF = 58.85%.

3.
Tetrahedron ; 1302023 Jan 09.
Article in English | MEDLINE | ID: mdl-36777111

ABSTRACT

Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.

4.
Molecules ; 27(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745072

ABSTRACT

Large amplitude motions (LAMs) form a fundamental phenomenon that demands the development of specific theoretical and Hamiltonian models. In recent years, along with the strong progress in instrumental techniques on high-resolution microwave spectroscopy and computational capacity in quantum chemistry, studies on LAMs have become very diverse. Larger and more complex molecular systems have been taken under investigation, ranging from series of heteroaromatic molecules from five- and six-membered rings to polycyclic-aromatic-hydrocarbon derivatives. Such systems are ideally suited to create families of molecules in which the positions and the number of LAMs can be varied, while the heteroatoms often provide a sufficient dipole moment to the systems to warrant the observation of their rotational spectra. This review will summarize three types of LAMs: internal rotation, inversion tunneling, and ring puckering, which are frequently observed in aromatic five-membered rings such as furan, thiophene, pyrrole, thiazole, and oxazole derivatives, in aromatic six-membered rings such as benzene, pyridine, and pyrimidine derivatives, and larger combined rings such as naphthalene, indole, and indan derivatives. For each molecular class, we will present the representatives and summarize the recent insights on the molecular structure and internal dynamics and how they help to advance the field of quantum mechanics.


Subject(s)
Microwaves , Molecular Structure , Motion , Spectrum Analysis
5.
Angew Chem Int Ed Engl ; 61(34): e202205623, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35764533

ABSTRACT

Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.

6.
Curr Pharm Des ; 28(17): 1373-1388, 2022.
Article in English | MEDLINE | ID: mdl-35549862

ABSTRACT

A peptic ulcer is a lesion located in the esophagus, stomach, and upper intestine, caused by an imbalance between acid secretion and the release of protective mucus. This pathology is prevalent in approximately 14% of the world population and is commonly treated with proton pump inhibitors and type 2 histaminergic receptor antagonists, however, these drugs present concerning side effects that may lead to gastric cancer. In this sense, this research aimed to present the main heterocyclics studied in recent years. The screening method for the choice of articles was based on the selection of publications between 2000 and 2021 present in the Science Direct, Web of Science, Capes, and Scielo databases, by using the descriptors ''new derivatives'', "heterocyclics" "antiulcerogenic", "gastroprotective" and "antisecretor". This research showed that the most used rings in the development of anti-ulcer drugs were benzimidazole, quinazoline, thiazole, and thiadiazole. The results also portray several types of modern in silico, in vitro and in vivo assays, as well as the investigation of different mechanisms of action, with emphasis on proton pump inhibition, type 2 histaminergic receptor blockers, potassium competitive acid blockers, type E prostaglandin agonism, anti-secretory activity and anti-oxidant action. Additionally, the review evidenced the presence of the nitrogen atom in the heterocyclic ring as a determinant of the potential of the compound. This research suggests new alternatives for the treatment of gastric lesions, which may be more potent and cause fewer side effects than the currently used, and tend to evolve into more advanced studies in the coming years.


Subject(s)
Anti-Ulcer Agents , Peptic Ulcer , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Histamine H2 Antagonists/pharmacology , Histamine H2 Antagonists/therapeutic use , Humans , Peptic Ulcer/drug therapy , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use
7.
Environ Sci Technol ; 56(4): 2803-2815, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35089700

ABSTRACT

Here, we systematically compared the photoactivity and photobleaching behavior between dissolved black carbon (DBC) from rice straw biochar and leached dissolved organic carbon (LDOC) from rice straw compost using complementary techniques. The Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis showed that DBC was dominated by polycyclic aromatic (55.1%) and tannin-like molecules (24.1%), while LDOC was dominated by lignin-like (58.9%) and tannin-like molecules (19.7%). Under simulated sunlight conditions, DBC had much higher apparent quantum yields for 3DOM* and 1O2 but much lower apparent quantum yields for •OH than LDOC. After a 168 h irradiation, the total number of LDOC formulas identified by FT-ICR MS decreased by 40.1% with concurrent increases in O/C and H/C ratios and also decreases in double bond equivalence minus oxygen (DBE - O) and average molecular weight identified by gel permeation chromatography. However, despite the large decreases in UVA254 and DOC, the total number of DBC formulas decreased only by 12.0% with nearly unchanged O/C ratio, DBE - O values, molecular weight distribution, and benzenepolycarboxylic aromatic condensation (BACon) index regardless of the decreased percentage of condensed aromatic carbon (ConAC %). Compared with LDOC, the photolysis of DBC was much less oxidative and destructive mainly via breakup of a small portion of the highly condensed aromatic rings, probably accompanied by photodecarboxylation.


Subject(s)
Composting , Oryza , Carbon , Charcoal , Dissolved Organic Matter , Soot , Tannins
8.
Neural Regen Res ; 17(3): 508-511, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34380879

ABSTRACT

Parkinson's disease, the second most prevalent neurodegenerative disorder worldwide, is characterized by a progressive loss of dopaminergic neurons in substantia nigra pars compacta, causing motor symptoms. This disorder's main hallmark is the formation of intraneuronal protein inclusions, named Lewy bodies and neurites. The major component of these arrangements is α-synuclein, an intrinsically disordered and soluble protein that, in pathological conditions, can form toxic and cell-to-cell transmissible amyloid structures. Preventing α-synuclein aggregation has attracted significant effort in the search for a disease-modifying therapy for Parkinson's disease. Small molecules like SynuClean-D, epigallocatechin gallate, trodusquemine, or anle138b exemplify this therapeutic potential. Here, we describe a subset of compounds containing a single aromatic ring, like dopamine, ZPDm, gallic acid, or entacapone, which act as molecular chaperones against α-synuclein aggregation. The simplicity of their structures contrasts with the complexity of the aggregation process, yet the block efficiently α-synuclein assembly into amyloid fibrils, in many cases, redirecting the reaction towards the formation of non-toxic off-pathway oligomers. Moreover, some of these compounds can disentangle mature α-synuclein amyloid fibrils. Their simple structures allow structure-activity relationship analysis to elucidate the role of different functional groups in the inhibition of α-synuclein aggregation and fibril dismantling, making them informative lead scaffolds for the rational development of efficient drugs.

9.
Small Methods ; 5(11): e2100770, 2021 11.
Article in English | MEDLINE | ID: mdl-34927965

ABSTRACT

Immune and targeted therapy are becoming the first-line treatment for renal cell carcinoma (RCC). However, therapeutic outcomes are limited due to the low efficiency and side effect. Here, it is found that helicenes are able to exhibit an anticancer capability through changing the molecular structure from planar to nonplanar. Furthermore, the cytotoxicity in vitro and cancer inhibition ability of nonplanar helicenes increase with its aromatic rings' number. It is further demonstrated that benzo[4]helicenium shows the specific killing efficiency against the RCC cancer as compared to normal kidney cells. This is majorly originated from a more selective damage of benzo[4]helicenium for mitochondria and DNA in RCC cancer cells, not the normal kidney. The selective killing ability of benzo[4]helicenium makes it have potential to be used as a targeted drug for the precise treatment of RCC.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Gene Expression Profiling/methods , Kidney Neoplasms/drug therapy , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Polycyclic Compounds/chemical synthesis , Animals , Carcinoma, Renal Cell/genetics , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage , Humans , Kidney Neoplasms/genetics , Male , Mice , Mice, Nude , Molecular Structure , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacology , Polycyclic Compounds/chemistry , Polycyclic Compounds/pharmacology , RNA-Seq , Xenograft Model Antitumor Assays
10.
ACS Appl Mater Interfaces ; 13(48): 57693-57702, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813270

ABSTRACT

Ladder-type fused aromatic systems are important core structures of small molecule acceptors for organic solar cells (OSCs). In this study, a new ladder-type donor building block, based on the benzo[1,2-b:4,5-b']dithiophene (BDT) unit where the 3,7 positions of the BDT thiophene rings and the 3' position of the thiophene rings of the vertical BDT were fused to construct a seven-ring core structure named f-DTBDT, was investigated. In the f-DTBDT structure, the fusion of the BDT core and the thiophene rings at the 4,8 positions of BDT constrains all of the aromatic rings in a coplanar structure. The newly designed f-DTBDT was successfully employed as a core donor building block and conjugated with three electron-withdrawing acceptors (2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile (2HIC), 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC), and 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2ClIC)) as acceptor-donor-acceptor (A-D-A)-type acceptor materials for OSCs. Characterization results showed that the three synthesized A-D-A acceptors of DTBDT-IC, DTBDT-4F, and DTBDT-4Cl have high absorption behavior in the vis-NIR region as result of an intramolecular charge transfer interaction engendered by f-DTBDT and the ending group. The absorption regions of the acceptors were complementary with that of polymer PM6. Also, the frontier orbital energy levels of the new acceptors and wide-band-gap PM6 are well matched. Bulk heterojunction OSCs were fabricated using PM6 and the acceptors, and the highest power conversion efficiency (PCE) of 10.15% was obtained when using PM6:DTBDT-4F as the active layer.

11.
ACS Appl Mater Interfaces ; 13(41): 48818-48827, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34613705

ABSTRACT

Organics with the merit of renewability have been viewed as the promising alternative of inorganic electrode materials in lithium-ion batteries, but most of them display inferior performance due to the sluggish ion/electron diffusion and the potential dissolution in aprotic electrolytes. Here, covalent triazine frameworks (CTFs-1), full of vertical pores and layered spaces for Li+ transfer, have been synthesized with p-dicyanobenzene as the monomer by a facile two-step method including a prepolymerization with CF3SO3H as the catalyst and deep polymerization in molten ZnCl2. CTFs-1-400, obtained at the deep polymerization temperature of 400 °C, exhibits the superlithiation property with the specific capacities of 1626 mA h g-1 at 25 °C and 1913 mA h g-1 at 45 °C at 100 mA g-1, indicating the formation of Li6C6/Li6C3N3 in the reduction process. Electrochemical analysis and density functional theory calculation indicate that the ultrahigh capacity is mainly contributed by the capacitance of micropores and the redox capacity of benzene and triazine rings. Moreover, CTFs-1-400 displays the specific capacity of 740 mA h g-1 for 1000 cycles at 1 A g-1 with almost no capacity fading.

12.
IUCrJ ; 8(Pt 4): 644-654, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34258012

ABSTRACT

The variation of charge density of two-electron multicentre bonding (pancake bonding) between semi-quinone radicals with pressure and temperature was studied on a salt of 5,6-di-chloro-2,3-di-cyano-semi-quinone radical anion (DDQ) with 4-cyano-N-methyl-pyridinium cation (4-CN) using the Transferable Aspheric Atom Model (TAAM) refinement. The pancake-bonded radical dimers are stacked by non-bonding π-interactions. With rising pressure, the covalent character of interactions between radicals increases, and above 2.55 GPa, the electron density indicates multicentric covalent interactions throughout the stack. The experimental charge densities were verified and corroborated by periodic DFT computations. The TAAM approach has been tested and validated for atomic resolution data measured at ambient pressure; this work shows this approach can also be applied to diffraction data obtained at pressures up to several gigapascals.

13.
Molecules ; 26(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810025

ABSTRACT

Protein kinases are key enzymes in many signal transduction pathways, and play a crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However, aberrant function of kinases has been associated with cancers and many other diseases. Consequently, competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound to protein kinases. This provided us with a unique opportunity to study molecular determinants for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are "flat" molecules with high aromatic ring counts and low fractions of sp3 carbon. All but one PKI possessed one or more aromatic rings. More importantly, it was found that the average weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic ring-originated non-bonded interactions (i.e., π-π stacking interactions, CH-π interactions, cation-π interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible for the molecular recognition of PKIs. As an illustration, two representative PKI-kinase complexes were employed to examine the relative importance of different modes of non-bonded interactions for the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase BTK showed that CH-π interactions and π-π stacking interactions between aromatic rings of the drug and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular determinants for the molecular recognition of PKIs. In conclusion, our findings support the following pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic rings which is linked with one or more hydrophilic functional groups. The former has the structural role of acting as a scaffold and the functional role of participating in aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the hinge region and other hydrophilic residues of the ATP binding pocket.


Subject(s)
Databases, Protein , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Hydrogen Bonding
14.
Polymers (Basel) ; 12(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213915

ABSTRACT

The synthesis and characterization of four novel donor-acceptor-donor π-extended oligomers, incorporating naphtha(1-b)thiophene-4-carboxylate or benzo(b)thieno(3,2-g) benzothiophene-4-carboxylate 2-octyldodecyl esters as end-capping moieties, and two different conjugated core fragments, is reported. The end-capping moieties are obtained via a cascade sequence of sustainable organic reactions, and then coupled to benzo(c)(1,2,5)thiadiazole and its difluoro derivative as the electron-poor π-conjugated cores. The optoelectronic properties of the oligomers are reported. The novel compounds revealed good film forming properties, and when tested in bulk-heterojunction organic photovoltaic cell devices in combination with PC61BM, revealed good fill factors, but low efficiencies, due to their poor absorption profiles.

15.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 2): 231-234, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32071752

ABSTRACT

The title compound, C7H3F5INS, a penta-fluoro-sulfanyl (SF5) containing arene, was synthesized from 4-(penta-fluoro-sulfan-yl)benzo-nitrile and lithium tetra-methyl-piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter-mediates that have not been demonstrated using previous methods. The mol-ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta-fluoro-sulfanyl substituent in the plane of the mol-ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta-fluoro-sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S-F bond lengths of the penta-fluoro-sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol-ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S-F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C-H⋯F and N⋯I inter-actions as well as out-of-plane F⋯C inter-actions are observed. According to the Hirshfeld analysis, the principal inter-molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).

16.
Angew Chem Int Ed Engl ; 59(23): 9102-9112, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32045078

ABSTRACT

Two series of bulky alkaline earth (Ae) metal amide complexes have been prepared: Ae[N(TRIP)2 ]2 (1-Ae) and Ae[N(TRIP)(DIPP)]2 (2-Ae) (Ae=Mg, Ca, Sr, Ba; TRIP=SiiPr3 , DIPP=2,6-diisopropylphenyl). While monomeric 1-Ca was already known, the new complexes have been structurally characterized. Monomers 1-Ae are highly linear while the monomers 2-Ae are slightly bent. The bulkier amide complexes 1-Ae are by far the most active catalysts in alkene hydrogenation with activities increasing from Mg to Ba. Catalyst 1-Ba can reduce internal alkenes like cyclohexene or 3-hexene and highly challenging substrates like 1-Me-cyclohexene or tetraphenylethylene. It is also active in arene hydrogenation reducing anthracene and naphthalene (even when substituted with an alkyl) as well as biphenyl. Benzene could be reduced to cyclohexane but full conversion was not reached. The first step in catalytic hydrogenation is formation of an (amide)AeH species, which can form larger aggregates. Increasing the bulk of the amide ligand decreases aggregate size but it is unclear what the true catalyst(s) is (are). DFT calculations suggest that amide bulk also has a noticeable influence on the thermodynamics for formation of the (amide)AeH species. Complex 1-Ba is currently the most powerful Ae metal hydrogenation catalyst. Due to tremendously increased activities in comparison to those of previously reported catalysts, the substrate scope in hydrogenation catalysis could be extended to challenging multi-substituted unactivated alkenes and even to arenes among which benzene.

17.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 10): 1418-1422, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31636968

ABSTRACT

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri-chloro-benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C-(C=O)-C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra-molecular O-H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter-molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.

18.
IUCrJ ; 6(Pt 2): 156-166, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867913

ABSTRACT

The first systematic study of π interactions between non-aromatic rings, based on the authors' own results from an experimental X-ray charge-density analysis assisted by quantum chemical calculations, is presented. The landmark (non-aromatic) examples include quinoid rings, planar radicals and metal-chelate rings. The results can be summarized as: (i) non-aromatic planar polyenic rings can be stacked, (ii) interactions are more pronounced between systems or rings with little or no π-electron delocalization (e.g. quinones) than those involving delocalized systems (e.g. aromatics), and (iii) the main component of the interaction is electrostatic/multipolar between closed-shell rings, whereas (iv) interactions between radicals involve a significant covalent contribution (multicentric bonding). Thus, stacking covers a wide range of interactions and energies, ranging from weak dispersion to unlocalized two-electron multicentric covalent bonding ('pancake bonding'), allowing a face-to-face stacking arrangement in some chemical species (quinone anions). The predominant interaction in a particular stacked system modulates the physical properties and defines a strategy for crystal engineering of functional materials.

19.
Angew Chem Int Ed Engl ; 57(43): 14026-14031, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30215882

ABSTRACT

Achieving gate control with atomic precision, which is crucial to the transistor performance on the smallest scale, remains a challenge. Herein we report a new class of aromatic-ring molecular nanotransistors based on graphene-molecule-graphene single-molecule junctions by using an ionic-liquid gate. Experimental phenomena and theoretical calculations confirm that this ionic-liquid gate can effectively modulate the alignment between molecular frontier orbitals and the Fermi energy level of graphene electrodes, thus tuning the charge-transport properties of the junctions. In addition, with a small gate voltage (|VG |≤1.5 V) ambipolar charge transport in electrochemically inactive molecular systems (EG >3.5 eV) is realized. These results offer a useful way to build high-performance single-molecule transistors, thus promoting the prospects for molecularly engineered electronic devices.

20.
Front Pharmacol ; 9: 395, 2018.
Article in English | MEDLINE | ID: mdl-29740321

ABSTRACT

The identification of lead compounds usually includes a step of chemical diversity generation. Its rationale may be supported by both qualitative (SAR) and quantitative (QSAR) approaches, offering models of the putative ligand-receptor interactions. In both scenarios, our understanding of which interactions functional groups can perform is mostly based on their chemical nature (such as electronegativity, volume, melting point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it is challenging to predict from 2D structures which functional groups will be able to perform interactions with the target receptor, at which intensity and relative abundance in the biological environment, all of which will contribute to ligand potency and intrinsic activity. With this in mind, the aim of this work is to assess properties of aromatic rings, commonly used for drug design, in aqueous solution through molecular dynamics simulations in order to characterize their chemical features and infer their impact in complexation dynamics. For this, common aromatic and heteroaromatic rings were selected and received new atomic charge set based on the direction and module of the dipole moment from MP2/6-31G* calculations, while other topological terms were taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties were simulated for a calibration set composed by nearly 40 molecules and compared to their respective experimental data, in order to validate each topology. Based on the reliance of the employed strategy, we expanded the dataset to more than 100 aromatic rings. Properties in aqueous solution such as solvent accessible surface area, H-bonds availability, H-bonds residence time, and water structure around heteroatoms were calculated for each ring, creating a database of potential interactions, shedding light on features of drugs in biological solutions, on the structural basis for bioisosterism and on the enthalpic/entropic costs for ligand-receptor complexation dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL