Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
1.
FEBS Lett ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227319

ABSTRACT

The opening of the mitochondrial permeability transition pore (PTP), a Ca2+-dependent pore located in the inner mitochondrial membrane, triggers mitochondrial outer membrane permeabilization (MOMP) and induces organelle rupture. However, the underlying mechanism of PTP-induced MOMP remains unclear. Mitochondrial carrier homolog 2 (MTCH2) mediates MOMP process by facilitating the recruitment of tBID to mitochondria. Here, we show that MTCH2 binds to cyclophilin D (CyPD) and promotes the dimerization of F-ATP synthase via interaction with subunit j. The interplay between MTCH2 and subunit j coordinates MOMP and PTP to mediate the occurrence of mitochondrial permeability transition. Knockdown of CyPD, MTCH2 and subunit j markedly sensitizes cells to RSL3-induced ferroptosis, which is prevented by MitoTEMPO, suggesting that mitochondrial permeability transition mediates ferroptosis defense.

2.
Plant Physiol Biochem ; 216: 109115, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260262

ABSTRACT

Photosynthesis in fluctuating light requires coordinated adjustments of diffusion conductance and biochemical capacity, but the role of chloroplast ATP synthase activity (gH+) in dynamic photosynthesis is not well understood. In this study, we measured gas exchange, chlorophyll fluorescence and electrochromic shift signals in fluctuating light for leaves of tomato (Solanum lycopersicum) and maize (Zea mays). During the transition from sun to shade, simultaneous increases in gH+, effective quantum yield of PSII, and net CO2 assimilation rate (AN) occurred in tomato but uncoupled in maize, indicating that gH + limited AN during the sun-to-shade transition in tomato but not in maize. During the shade-to-sun transition, gH + increased simultaneously with stomatal conductance, mesophyll conductance and Rubisco carboxylation capacity in tomato, suggesting that gH+ is an overlooked factor affecting light induction of AN in tomato. By comparison, gH + maintained at high levels in maize and its AN was mainly restricted by stomatal conductance. Our results reveal that the kinetics of gH+ in fluctuating light differs between species, and chloroplast ATP synthase may be a potential target for improving dynamic photosynthesis in crops such as tomato.

3.
Virulence ; 15(1): 2397492, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39239724

ABSTRACT

Coronavirus nonstructural protein 2 (Nsp2) is regarded as a virulence determinant and plays a critical role in virus replication, and innate immunity. Screening and identifying host cell proteins that interact with viral proteins is an effective way to reveal the functions of viral proteins. In this study, the host proteins that interacted with transmissible gastroenteritis virus (TGEV) Nsp2 were identified using immunoprecipitation combined with LC-MS/MS. 77 host cell proteins were identified as putative Nsp2 interaction host cell proteins and a protein-protein interaction (PPI) was constructed. The identified proteins were found to be associated with various subcellular locations and functional categories through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. It is hypothesized that the host cell proteins interacting with TGEV Nsp2 are mainly involved in the formation of the cytoplasmic translation initiation complex, mRNA binding, ribosomes, and proteasomes. Among these, the ATP5B, a core subunit of the mitochondrial ATP synthase was further studied. The Coimmunoprecipitation (Co-IP) and indirect immunofluorescence (IFA) results confirmed that TGEV Nsp2 interacted with ATP5B. Furthermore, the downregulation of ATP5B expression was found to promote TGEV replication, suggesting that ATP5B might function as a negative regulator of TGEV replication. Collectively, our results offer additional insights into the functions of Nsp2 and provide a novel antiviral target against TGEV.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Transmissible gastroenteritis virus , Viral Nonstructural Proteins , Virus Replication , Transmissible gastroenteritis virus/genetics , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Swine , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Humans , Host-Pathogen Interactions , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/genetics , Cell Line , Immunoprecipitation , Tandem Mass Spectrometry
4.
J Biol Chem ; : 107839, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343002

ABSTRACT

Toxins TcdA and TcdB are the main virulence factors of Clostridioides difficile, a leading cause of hospital-acquired diarrhea. Despite their importance, there is a significant knowledge gap of druggable targets for inhibiting toxin production. To address this, we screened non-antibiotic phytochemicals to identify potential chemical genetic probes to discover anti-virulence drug targets. This led to the identification of 18ß-glycyrrhetinic acid (enoxolone), a licorice metabolite, as an inhibitor of TcdA and TcdB biosynthesis. Using affinity-based proteomics, potential targets were identified as ATP synthase subunit alpha (AtpA) and adenine deaminase (Ade, which catalyzes conversion of adenine to hypoxanthine in the purine salvage pathway). To validate these targets, a multi-faceted approach was adopted. Gene silencing of ade and atpA inhibited toxin biosynthesis, while SPR and ITC molecular interaction analyses revealed direct binding of enoxolone to Ade. Metabolomics demonstrated enoxolone induced the accumulation of adenosine, while depleting hypoxanthine and ATP in C. difficile. Transcriptomics further revealed enoxolone dysregulated phosphate uptake genes, which correlated with reduced cellular phosphate levels. These findings suggest that enoxolone's cellular action is multi-targeted. Accordingly, supplementation with both hypoxanthine and triethyl phosphate (TEP), a phosphate source, was required to fully restore toxin production in the presence of enoxolone. In conclusion, through the characterization of enoxolone, we identified promising anti-virulence targets that interfere with nucleotide salvage and ATP synthesis, which may also block toxin biosynthesis.

5.
Biochim Biophys Acta Bioenerg ; 1866(1): 149514, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326542

ABSTRACT

Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.

6.
Biochem Biophys Res Commun ; 733: 150705, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39293334

ABSTRACT

The F-type ATP synthase/ATPase (FOF1) is important for cellular bioenergetics in eukaryotes and bacteria. We recently showed that venturicidins, a class of macrolides that inhibit the proton transporting complex (FO), can also induce time-dependent functional decoupling of F1-ATPase from FO on membranes from Escherichia coli and Pseudomonas aeruginosa. This dysregulated ATPase activity could deplete bacterial ATP levels and contribute to venturicidin's capacity to enhance the bactericidal action of aminoglycosides antibiotics. We now show that a distinct type of FO inhibitor, tributyltin, also can decouple FOF1-ATPase activity of E. coli membranes. In contrast to the action of venturicidins, decoupling by tributyltin is not dependent on ATP, indicating mechanistic differences. Tributyltin disrupts the coupling role of the ε subunit of F1 but does not induce dissociation of the F1-ATPase complex from membrane-embedded FO. Understanding such decoupling mechanisms could support development of novel antibacterial compounds that target dysregulation of FOF1 functions.


Subject(s)
Escherichia coli , Proton-Translocating ATPases , Trialkyltin Compounds , Trialkyltin Compounds/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/genetics , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Escherichia coli Proteins/metabolism , Bacterial Proton-Translocating ATPases/metabolism , Bacterial Proton-Translocating ATPases/chemistry
7.
Pharmacol Res ; 208: 107393, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39233058

ABSTRACT

Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.


Subject(s)
ATPase Inhibitory Protein , Mitochondria , Humans , Animals , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Calcium/metabolism , Mitochondrial Permeability Transition Pore/metabolism
8.
Pharmacol Res ; 209: 107423, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303772

ABSTRACT

Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention. Further, the technical requirements necessary to allow drug designs that are effective at the multiple levels of functionality and modality of human F-ATP synthase are discussed. The structure-based development of gastric proton pump inhibitors is used to exemplify what might be feasible for human F-ATP synthase. And finally, four structural regions of the human F-ATP synthase are examined as potential sites for the development of structure based drug development.

9.
Bioorg Chem ; 151: 107702, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142196

ABSTRACT

The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.


Subject(s)
Antitubercular Agents , Drug Design , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Phenothiazines , Phenothiazines/pharmacology , Phenothiazines/chemistry , Phenothiazines/chemical synthesis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Animals , Chlorocebus aethiops , Vero Cells , Molecular Docking Simulation , Tuberculosis, Multidrug-Resistant/drug therapy
10.
Biophys Physicobiol ; 21(2): e210015, 2024.
Article in English | MEDLINE | ID: mdl-39206130

ABSTRACT

Mycoplasma mobile is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.

11.
Extracell Vesicles Circ Nucl Acids ; 5(2): 271-275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39092319

ABSTRACT

Mitochondria dysfunction is increasingly recognized as a critical factor in various pathogenic processes. The mechanism governing mitochondrial quality control serves as an adaptive response, ensuring the preservation of mitochondrial morphology, quantity, and overall function, crucial for cell survival. The generation of mitochondria-derived vesicles (MDVs) is one of the processes of mitochondrial quality control. Recent literature has suggested MDV heterogeneity; however, the detailed characteristics of various MDV subtypes still need to be studied better. Recent studies have shown that MDVs also play a role in inter-organelle communication for mitochondria besides quality control. For instance, Hazan et al. demonstrated that functional mitochondria from Saccharomyces cerevisiae release vesicles independent of the fission machinery. These vesicles, falling within the typical size range of MDVs, were selectively loaded with mitochondrial proteins, especially with functional ATP synthase subunits. Intriguingly, these MDVs maintained membrane potential and could generate ATP. Moreover, MDVs could fuse with naïve mitochondria, transferring their ATP generation machinery. Lastly, this study revealed a potential delivery mechanism of ATP-producing vesicles, presenting a promising avenue to rejuvenate ATP-deficient mitochondria. Overall, this study unveils a novel mechanism for inter-organelle communication by vesicles, which is crucial for maintaining cellular homeostasis and could also be important in pathological conditions.

12.
J Biol Chem ; 300(9): 107659, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128728

ABSTRACT

Chloroplast ATP synthase (CFoCF1) synthesizes ATP by using a proton electrochemical gradient across the thylakoid membrane, termed ΔµH+, as an energy source. This gradient is necessary not only for ATP synthesis but also for reductive activation of CFoCF1 by thioredoxin, using reducing equivalents produced by the photosynthetic electron transport chain. ΔµH+ comprises two thermodynamic components: pH differences across the membrane (ΔpH) and the transmembrane electrical potential (ΔΨ). In chloroplasts, the ratio of these two components in ΔµH+ is crucial for efficient solar energy utilization. However, the specific contribution of each component to the reductive activation of CFoCF1 remains unclear. In this study, an in vitro assay system for evaluating thioredoxin-mediated CFoCF1 reduction is established, allowing manipulation of ΔµH+ components in isolated thylakoid membranes using specific chemicals. Our biochemical analyses revealed that ΔpH formation is essential for thioredoxin-mediated CFoCF1 reduction on the thylakoid membrane, whereas ΔΨ formation is nonessential.


Subject(s)
Chloroplast Proton-Translocating ATPases , Oxidation-Reduction , Thylakoids , Thylakoids/metabolism , Chloroplast Proton-Translocating ATPases/metabolism , Protons , Thioredoxins/metabolism , Hydrogen-Ion Concentration , Chloroplasts/metabolism , Membrane Potentials , Proton-Motive Force , Adenosine Triphosphate/metabolism
13.
Toxins (Basel) ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39057927

ABSTRACT

In this paper, we provide an overview of mitochondrial bioenergetics and specific conditions that lead to the formation of non-bilayer structures in mitochondria. Secondly, we provide a brief overview on the structure/function of cytotoxins and how snake venom cytotoxins have contributed to increasing our understanding of ATP synthesis via oxidative phosphorylation in mitochondria, to reconcile some controversial aspects of the chemiosmotic theory. Specifically, we provide an emphasis on the biochemical contribution of delocalized and localized proton movement, involving direct transport of protons though the Fo unit of ATP synthase or via the hydrophobic environment at the center of the inner mitochondrial membrane (proton circuit) on oxidative phosphorylation, and how this influences the rate of ATP synthesis. Importantly, we provide new insights on the molecular mechanisms through which cobra venom cytotoxins affect mitochondrial ATP synthesis, mitochondrial structure, and dynamics. Finally, we provide a perspective for the use of cytotoxins as novel pharmacological tools to study membrane bioenergetics and mitochondrial biology, how they can be used in translational research, and their potential therapeutic applications.


Subject(s)
Elapid Venoms , Energy Metabolism , Mitochondria , Mitochondrial Membranes , Animals , Energy Metabolism/drug effects , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/metabolism , Cytotoxins/pharmacology , Cytotoxins/toxicity , Cytotoxins/chemistry , Adenosine Triphosphate/metabolism , Oxidative Phosphorylation/drug effects
14.
ACS Appl Mater Interfaces ; 16(29): 37521-37529, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38985575

ABSTRACT

Sodium ions and protons regulate various fundamental processes at the cell and tissue levels across all biological kingdoms. It is therefore pivotal for bioelectronic devices, such as biosensors and biotransducers, to control the transport of these ions through biological membranes. Our study explores the regulation of proton and sodium concentrations by integrating an Na+-type ATP synthase, a glucose dehydrogenase (GDH), and a urease into a multienzyme logic system. This system is designed to operate using various chemical control input signals, while the output current corresponds to the local change in proton or sodium concentrations. Therein, a H+ and Na+ biotransducer was integrated to fulfill the roles of signal transducers for the monitoring and simultaneous control of Na+ and H+ levels, respectively. To increase the proton concentration at the output, we utilized GDH driven by the inputs of glucose and nicotinamide adenine dinucleotide (NAD+), while recorded the signal change from the biotransducer, together acting as an AND enzyme logic gate. On the contrary, we introduced urease enzyme which hydrolyzed urea to control the decrease in proton concentration, serving as a NOT gate and reset. By integrating these two enzyme logic gates we formed a simple multienzyme logic system for the control of proton concentrations. Furthermore, we also demonstrate a more complex, Na+-type ATP synthase-urease multienzyme logic system, controlled by the two different inputs of ADP and urea. By monitoring the voltage of the peak current as the output signal, this logic system acts as an AND enzyme logic gate. This study explores how multienzyme logic systems can modulate biologically important ion concentrations, opening the door toward advanced biological on-demand control of a variety of bioelectronic enzyme-based devices, such as biosensors and biotransducers.


Subject(s)
Glucose 1-Dehydrogenase , Sodium , Sodium/metabolism , Sodium/chemistry , Glucose 1-Dehydrogenase/metabolism , Glucose 1-Dehydrogenase/chemistry , Urease/metabolism , Urease/chemistry , Protons , Glucose/metabolism , Biosensing Techniques/methods , NAD/metabolism , NAD/chemistry
15.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026696

ABSTRACT

A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.

16.
Antibodies (Basel) ; 13(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39051327

ABSTRACT

This study investigated a novel radioimmunotherapy strategy for targeting tumor angiogenesis. We developed a radiopharmaceutical complex by labeling an anti-adenosine triphosphate synthase (ATPS) monoclonal antibody (mAb) with the radioisotope 177Lu using DOTA as a chelating agent. 177Lu-DOTA-ATPS mAb demonstrated high labeling efficiency (99.0%) and stability in serum. MKN-45 cancer cells exhibited the highest cellular uptake, which could be specifically blocked by unlabeled ATPS mAb. In mice, 177Lu-DOTA-ATPS mAb accumulated significantly in tumors, with a tumor uptake of 16.0 ± 1.5%ID/g on day 7. 177Lu-DOTA-ATPS mAb treatment significantly reduced the viability of MKN-45 cells in a dose-dependent manner. In a xenograft tumor model, this radioimmunotherapy strategy led to substantial tumor growth inhibition (82.8%). Furthermore, combining 177Lu-DOTA-ATPS mAb with sunitinib, an anti-angiogenic drug, enhanced the therapeutic efficacy of sunitinib in the mouse model. Our study successfully developed 177Lu-DOTA-ATPS mAb, a radioimmunotherapy agent targeting tumor blood vessels. This approach demonstrates significant promise for inhibiting tumor growth, both as a single therapy and in combination with other anti-cancer drugs.

17.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063070

ABSTRACT

Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Mitochondrial Proton-Translocating ATPases , Plastids , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Plastids/metabolism , Plastids/genetics , Mitochondria/metabolism , Seedlings/genetics , Seedlings/metabolism , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Lincomycin/pharmacology , Gene Expression Profiling
18.
Antimicrob Agents Chemother ; 68(7): e0167123, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38869301

ABSTRACT

Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.


Subject(s)
DNA, Kinetoplast , Macrolides , Membrane Potential, Mitochondrial , Trypanosoma brucei brucei , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics , Membrane Potential, Mitochondrial/drug effects , Macrolides/pharmacology , DNA, Kinetoplast/genetics , DNA, Kinetoplast/drug effects , Trypanocidal Agents/pharmacology , Leishmania donovani/drug effects , Leishmania donovani/genetics , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/drug effects
19.
Biosystems ; 242: 105255, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901165

ABSTRACT

In this last article of the trilogy, the unified biothermokinetic theory of ATP synthesis developed in the previous two papers is applied to a major problem in comparative physiology, biochemistry, and ecology-that of metabolic scaling as a function of body mass across species. A clear distinction is made between intraspecific and interspecific relationships in energy metabolism, clearing up confusion that had existed from the very beginning since Kleiber first proposed his mouse-to-elephant rule almost a century ago. It is shown that the overall mass exponent of basal/standard metabolic rate in the allometric relationship [Formula: see text] is composed of two parts, one emerging from the relative intraspecific constancy of the slope (b), and the other (b') arising from the interspecific variation of the mass coefficient, a(M) with body size. Quantitative analysis is shown to reveal the hidden underlying relationship followed by the interspecific mass coefficient, a(M)=P0M0.10, and a universal value of P0=3.23 watts, W is derived from empirical data on mammals from mouse to cattle. The above relationship is shown to be understood only within an evolutionary biological context, and provides a physiological explanation for Cope's rule. The analysis also helps in fundamentally understanding how variability and a diversity of scaling exponents arises in allometric relations in biology and ecology. Next, a molecular-level understanding of the scaling of metabolism across mammalian species is shown to be obtained by consideration of the thermodynamic efficiency of ATP synthesis η, taking mitochondrial proton leak as a major determinant of basal metabolic rate in biosystems. An iterative solution is obtained by solving the mathematical equations of the biothermokinetic ATP theory, and the key thermodynamic parameters, e.g. the degree of coupling q, the operative P/O ratio, and the metabolic efficiency of ATP synthesis η are quantitatively evaluated for mammals from rat to cattle. Increases in η (by ∼15%) over a 2000-fold body size range from rat to cattle, primarily arising from an ∼3-fold decrease in the mitochondrial H+ leak rate are quantified by the unified ATP theory. Biochemical and mechanistic consequences for the interpretation of basal metabolism, and the various molecular implications arising are discussed in detail. The results are extended to maximum metabolic rate, and interpreted mathematically as a limiting case of the general ATP theory. The limitations of the analysis are pointed out. In sum, a comprehensive quantitative analysis based on the unified biothermokinetic theory of ATP synthesis is shown to solve a central problem in biology, physiology, and ecology on the scaling of energy metabolism with body size.


Subject(s)
Adenosine Triphosphate , Energy Metabolism , Mammals , Mitochondria , Thermodynamics , Animals , Adenosine Triphosphate/metabolism , Energy Metabolism/physiology , Mitochondria/metabolism , Mammals/metabolism , Species Specificity , Mice , Body Size/physiology , Models, Biological , Cattle
20.
Biochem Pharmacol ; 226: 116338, 2024 08.
Article in English | MEDLINE | ID: mdl-38848780

ABSTRACT

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Subject(s)
Mitochondria, Heart , Myocardial Infarction , Myocytes, Cardiac , Animals , Male , Mice , Cells, Cultured , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
SELECTION OF CITATIONS
SEARCH DETAIL