Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Materials (Basel) ; 17(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124402

ABSTRACT

In the paper, the eccentric compression behavior of the truss-reinforced cross-shaped concrete-filled steel tubular (CCFST) column is investigated. A total of eighteen CCFST columns were tested under eccentric compression, and the key test variables included the reinforced truss node spacing (s = 140 mm and 200 mm), slenderness ratio (λ = 9.2, 16.6, and 23.1), and eccentricity ratio (η = 0, 0.08, and 0.15). The failure mode, deformation characteristic, stress distribution, strain distribution at the mid-span of the steel tube, and the eccentric compression bearing capacity were assessed. The results show that due to the addition of reinforced truss, the steel plates near the mid-span of eccentrically compressed CCFST columns experienced multi-wave buckling rather than single-wave buckling after the peak load was reduced to 85%, and the failure mode of concrete also changed from single-section to multi-section collapse failure. Comparisons were made with the unstiffened specimen. The ductility coefficient of the stiffened specimen with eccentricity ratios of 0.08-0.15 and node spacings of 140 mm~200 mm increased by 70~83%, approaching that of the multi-cell specimens with an increasing steel ratio of 1.8%. In addition, by comparing the test results with the calculation results of four domestic and international design codes, it was found that the Chinese codes CECS159-2018 and GB50936-2014, and the Eurocode 4 (2004) can be better employed to predict the compression bearing capacity of truss-reinforced CCFST columns.

2.
Materials (Basel) ; 17(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998300

ABSTRACT

In this paper, low circumferential reciprocating load foot-scale tests were performed on two nontruncated PHC B 600 130 tubular piles with bearing nodes to characterize the damage process and morphology of the specimens and to investigate the load-carrying performance of the members. The test results reveal that under the action of tensile-bending-shear loading, the bearing concrete in the node area buckles and is damaged, the anchored reinforcement in the node area yields, the constraint is weakened, an articulation point is formed, and the node rotational capacity increases. When the embedment depth increases from 200 mm to 300 mm, the ultimate bearing capacities of the positive and negative nodes increase by 31.04% and 36.16%, respectively. A numerical simulation is used to verify the test results. Considering the four types of piles without truncated nodes, the numerical simulation is used to analyze the node-bearing capacity at different embedment depths. Finally, a preferred node type is proposed as follows: a terminal plate welded anchor bar and pipe pile core-filled longitudinal reinforcement anchored into the bearing node, with a preferred embedment depth of 250 mm.

3.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930264

ABSTRACT

In order to study the bending-shear performance of CFRP concrete-filled steel tubes, static tests were conducted on 15 circular concrete-filled CFRP steel tube bending-shear specimens. For all specimens, Ds was 120 mm, ts was 2 mm, and ml was 1. The shear displacement (V-Δ) curve of the specimen and the collaborative work between the steel tube and CFRP are discussed. ABAQUS was applied to simulate the V-Δ curve and failure mode of the specimen. We explored the effects of CFRP layers, material strength, the steel ratio, and the shear span ratio on the bending-shear performance of components. The experimental results show that a steel tube and CFRP can work together. As the shear span ratio increased, the bearing capacity and stiffness of the specimen decreased. An increase in the number of transverse CFRP layers could improve the bearing capacity of the specimen, but it had no significant effect on the stiffness. Calculating the elastic stage stiffness and bearing capacity of 15 short columns of test and FE curves revealed an average error of 6.71% and a mean square error of 0.83 for the elastic stage stiffness. The simulation results of the established finite element model are in good agreement with the experimental results. The average error of the bearing capacity was 3.88%, with a mean square error of 0.94. Based on experimental and finite element results, the moment shear correlation equation for concrete-filled CFRP steel tube bending-shear members is presented.

4.
Polymers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932050

ABSTRACT

Among the many benefits of implementing numerical analysis on real objects, economic and environmental considerations are likely the most important ones. Nonetheless, it is also crucial to constrain the duration and space necessary for conducting experimental investigations. Although these benefits are clear, the applicability of such models must be appropriately verified. This research subjected validation of numerical models depicting the behavior of unstrengthened and strengthened laminated veneer lumber (LVL) beams. As a reinforcement, a carbon fiber reinforced polymer (CFRP) sheet and laminates were used. Experiments were conducted on full-scale members within the framework of the so-called four-point bending testing method. Numerical simulations were performed using the Abaqus software. Two types of material models were examined for laminated veneer lumber: linearly elastic and linearly elastic-perfectly plastic with Hill's yield criterion. A distinction was made in the material properties of carbon composites based on their location on the height of the cross-section. The outlined numerical models accurately depict the behavior of real structural elements. The precision of predicting load-bearing capacity amounts to a few percent for strengthened beams and a maximum of eleven percent for unstrengthened beams. The relative deviation between numerical and experimental values of bending stiffness was at a maximum of seven percent. Applying the elastic-plastic model enables accurate representation of the load versus deflection relation and the distribution of stress and deformation of strengthened beams. Based on the findings, directives were provided for further optimization of the positioning of composite reinforcement along the span of the beam. Reinforcement design of existing laminated veneer lumber members can be made using presented methodology.

5.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893858

ABSTRACT

To investigate the axial compressive behavior of reinforced concrete-filled square glass-fiber-reinforced polymer(GFRP) tubular (RCFSGT) columns, 17 specimens were designed with variations in GFRP tube wall thickness, spiral reinforcement yield strength, and spiral reinforcement ratio. A detailed model was developed using the finite element software ABAQUS, enabling in-depth mechanistic analysis and expanded parameter studies. The results indicate that the failure types of the specimens are all manifested as GFRP square tube cracking, and the core concrete is subjected to crushing or shear failure. The inclusion of a reinforcement cage can significantly enhance the load-bearing capacity and ductility of the specimen. Furthermore, as the yield strength and reinforcement ratio of the spiral reinforcement increase, so does the load-bearing capacity of the specimen. The finite element simulation results align well with the experimental findings. As the wall thickness of the GFRP square tube increases from 2 mm to 6 mm, the load-bearing capacity improves by approximately 19.69%. With the yield strength of the spiral reinforcement rising from 200 MPa to 400 MPa, the specimen's load-bearing capacity shows an increase of approximately 7.55%. However, as its yield strength continues to increase, there is minimal change in the load-bearing capacity. When the stirrup ratio of spiral reinforcement rises from 0.33% to 2.26%, the specimen's load-bearing capacity experiences an increase of approximately 56.90%.

6.
Materials (Basel) ; 17(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894044

ABSTRACT

The axial compressive behaviours of coal gangue concrete-filled steel tube (GCFST) columns after chloride salt corrosion were investigated numerically. Numerical modelling was conducted through the static analysis method by finite element (FE) analysis. The failure mechanism, residual strength, and axial load-displacement curves were validated against tests of the coal gangue aggregate concrete-filled steel tube (GCFST) columns at room and natural aggregate concrete-filled steel tube (NCFST) columns after salt corrosion circumstance. According to the analysis on the stress distribution of the steel tube, the stress value of the steel tube decreased as the corrosion rate increased at the same characteristic point. A parametric analysis was carried out to determine the effect of crucial variation on residual strength. It indicated that material strength, the steel ratio, and the corrosion rate made a profound impact on the residual strength from the FE. The residual strength of the columns exposed to chloride salt was in negative correlation with the corrosion rate. The impact on the residual strength of the column was little, obvious by the replacement rate of the coal gangue. A simplified design formula for predicting the ultimate strength of GCFST columns after chloride salt corrosion exposure was proposed.

7.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730801

ABSTRACT

Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite materials. By combining concrete and steel pipes in a nested structure, the performance of the column will be greatly improved. The performance of CFDSTs is closely related to their design. However, existing codes for CFDST design often focus on how to verify the reliability of a design, but specific design parameters cannot be directly provided. As a machine learning technique that can simultaneously learn multiple related tasks, multi-task learning (MTL) has great potential in the structural design of CFDSTs. Based on 227 uniaxial compression cases of CFDSTs collected from the literature, this paper utilized three multi-task models (multi-task Lasso, VSTG, and MLS-SVR) separately to provide multiple parameters for CFDST design. To evaluate the accuracy of models, four statistical indicators were adopted (R2, RMSE, RRMSE, and ρ). The experimental results indicated that there was a non-linear relationship among the parameters of CFDSTs. Nevertheless, MLS-SVR was still able to provide an accurate set of design parameters. The coefficient matrices of two linear models, multi-task Lasso and VSTG, revealed the potential connection among CFDST parameters. The latent-task matrix V in VSTG divided the prediction tasks of inner tube diameter, thickness, strength, and concrete strength into three groups. In addition, the limitations of this study and future work are also summarized. This paper provides new ideas for the design of CFDSTs and the study of related codes.

8.
Heliyon ; 10(7): e28715, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689965

ABSTRACT

The study investigated the load capacity of cross-shaped concrete-filled steel tubular (CFST) columns under axial and eccentric compression using finite element software ABAQUS. It analyzed six specimens with measured data and an additional 26 specimens with varied parameters, including eccentricity, slenderness ratio, section steel ratio and material properties such as concrete strength and steel yield strength.The objective was to understand how these parameters affect the load capacity of cross-shaped CFST columns. The research findings suggest that as eccentricity and slenderness ratio increase, the ultimate capacity decreases. Conversely, it increases with higher steel content, concrete strength and steel yield strength. Moreover, the bearing capacity deteriorates more rapidly with reduced eccentricity and concrete strength, while it demonstrates a nearly linear increase with greater steel content. Additionally, the study found that enhancing the resilience of the channel steel significantly boosts the load-bearing capacity of the column. Based on these findings, practical design equations were developed to determine the maximum bearing capacity of cross-shaped CFST columns under axial and eccentric compression. These equations are grounded in confined concrete theory and demonstrate robust applicability for practical design purposes.

9.
Sci Rep ; 14(1): 11002, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745014

ABSTRACT

The recommended bearing capacity of medium weathering mudstone foundation is less than the capacity of the rock structure to withstand loads in Southwest China. A comprehensive failure characterization of medium weathering mudstone in Chengdu has been performed including bearing plate test (BPT), binocular vision measurement (BVM) test, uniaxial compressive strength test, trial trench test of shallow rock surface and 3D imaging in this paper. Failure behavior of rock has been modeled with 3D imaging algorithm that utilizes Zhang's calibration method in BVM system combination with trial trench test of shallow rock surface. The bearing capacity of medium weathering mudstone foundation were extracted from uniaxial experiments and BPT-BVM test by fitting relevant material properties to the data. The results revealed that: Bearing capacity of medium weathering mudstone of layered isotropic in Chengdu is undervalued. Specifically, the characteristic load carrying value is in the range 1500-2500 kP, that is 50% higher than in the local standard system. Failure process is different from Hoek-Brown Failure Criterion, presenting a wave peak transfer phenomenon of the increment displacement into the distance. Thus, it can be reduced to that of punching failures for thin bedded structures of Moudstone foundations. Compressive strength of soft rock proves to be main factor limiting the bearing capacity, a clear correlation between the uniaxial compressive strength reduction coefficient and the bearing capacity has been used to establish, leading to the proposal of a load bearing capacity prediction model.

10.
Sci Rep ; 14(1): 8319, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594332

ABSTRACT

Analyzing the stability of footings is a significant step in civil/geotechnical engineering projects. In this work, two novel predictive tools are suggested based on an artificial neural network (ANN) to analyze the bearing capacity of a footing installed on a two-layered soil mass. To this end, backtracking search algorithm (BSA) and equilibrium optimizer (EO) are employed to train the ANN for approximating the stability value (SV) of the system. After executing a set of finite element analyses, the settlement values lower/higher than 5 cm are considered to indicate the stability/failure of the system. The results demonstrated the efficiency of these algorithms in fulfilling the assigned task. In detail, the training error of the ANN (in terms of root mean square error-RMSE)) dropped from 0.3585 to 0.3165 (11.72%) and 0.2959 (17.46%) by applying the BSA and EO, respectively. Moreover, the prediction accuracy of the ANN climbed from 93.7 to 94.3% and 94.1% (in terms of area under the receiving operating characteristics curve-AUROC). A comparison between the elite complexities of these algorithms showed that the EO enjoys a larger accuracy, while BSA is a more time-effective optimizer. Lastly, an explicit mathematical formula is derived from the EO-ANN model to be conveniently used in predicting the SV.

11.
Materials (Basel) ; 17(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673088

ABSTRACT

The aluminum strength-to-weight ratio has become a highly significant factor in industrial applications. Placing stiffening ribs along the surface can significantly improve the panel's resistance to bending and compression in aluminum alloys. This study used single-point incremental forming (SPIF) to fabricate stiffening ribs for 1 mm and 3 mm thick aluminum alloy EN AW-2024-T3 sheets. A universal compression machine was used to investigate sheet deformation. The resulting deformation was examined using non-contact digital image correlation (DIC) based on several high-resolution cameras. The results showed that deformation progressively escalated from the edges toward the center, and the highest buckling values were confined within the non-strengthened area. Specimens with a larger thickness (3 mm) showed better effectiveness against buckling and bending for each applied load: 8 kN or 10 kN. Additionally, the displacement from the sheet surface decreased by 60% for sheets 3 mm thick and by half for sheets 1 mm thick, which indicated that thicker sheets could resist deformation better.

12.
J Prosthodont Res ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38684407

ABSTRACT

PURPOSE: This study investigated the fracture resistance of 0.5-mm-thick restorations for minimally invasive therapy. Anterior partial-coverage crowns composed of three-dimensional (3D)-printed 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP; Lithacon 3Y210, Lithoz) and 3D-printed composite (Varseo Smile Crown plus, Bego) were compared with a control group made from milled 3Y-TZP (Cercon ht, DentsplySirona). METHODS: Three groups each with 27 restorations were produced. For milled 3Y-TZP partial-coverage crowns, drill compensation was needed so the milling bur could access the inner surface at the incisal edge. Restoration fit was verified by cross-sectioning 12 specimens in each group. The remaining 15 restorations were sandblasted (Al2O3, 0.1 MPa) and adhesively cemented (Panavia SA, Kuraray) onto CoCr teeth. Static load-to-failure tests were performed. The load was induced on the incisal edge. The forces needed to fracture the specimens were analyzed using the Welch analysis of variance and post hoc Dunnet-T3 tests. The Weibull parameters were also calculated. RESULTS: Drill compensation increased cement thickness at the loading area by 200 µm in milled 3Y-TZP restorations compared with the 3D-printed partial-coverage crowns. Fracture resistance was the highest in 3D-printed 3Y-TZP restorations (1570±661N) followed by milled 3Y-TZP (886±164N) and 3D-printed composite partial-coverage crowns (570±233 N). Milled 3Y-TZP was associated with a substantially higher Weibull modulus (m=6) than the 3D-printed materials (m=2), suggesting greater reliability. CONCLUSIONS: Fracture resistance increased with tighter fit, demonstrating the benefit of the geometric freedom associated with 3D-printing. Future research should focus on making 3D-printed 3Y-TZP more reliable to increase its safety in clinical use.

13.
Sci Rep ; 14(1): 6203, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485713

ABSTRACT

Freeze-thaw cycles and compactness are two critical factors that significantly affect the engineering properties and safety of building foundations, especially in seasonally frozen regions. This paper investigated the effects of freeze-thaw cycles on the shear strength of naturally strongly chlorine saline soil with the compactness of 85%, 90% and 95%. Three soil samples with different compactness were made. Size and mass changes were measured and recorded during freeze-thaw cycles. Shear strength under different vertical pressures was determined by direct shear tests, and the cohesion and friction angle were measured and discussed. Microstructure characteristic changes of saline soil samples were observed using scanning electron microscopy under different freeze-thaw cycles. Furthermore, numerical software was used to calculate the subsoil-bearing capacity and settlement of the electric tower foundation in the Qarhan Salt Lake region under different freeze-thaw cycles. Results show that the low-density soil shows thaw settlement deformation, but the high-density soil shows frost-heaving deformation with the increase in freeze-thaw cycles. The shear strength of the soil samples first increases and then decreases with the increase in freeze-thaw cycles. After 30 freeze-thaw cycles, the friction angle of soil samples is 28.3%, 29.2% and 29.6% lower than the soil samples without freeze-thaw cycle, the cohesion of soil samples is 71.4%, 60.1% and 54.4% lower than the samples without freeze-thaw cycle, and the cohesion and friction angle of soil samples with different compactness are close to each other. Microstructural changes indicate that the freeze-thaw cycle leads to the breakage of coarse particles and the aggregation of fine particles. Correspondingly, the structure type of soil changes from a granular stacked structure to a cemented-aggregated system. Besides, the quality loss of soil samples is at about 2% during the freeze-thaw cycles. Results suggest that there may be an optimal compactness between 90 and 95%, on the premise of meeting the design requirements and economic benefits. This study can provide theoretical guidance for foundation engineering constructions in seasonally frozen regions.

14.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541471

ABSTRACT

The mechanical analysis of photovoltaics and building integrated photovoltaics is a key step for their optimal design and certification, and requires careful consideration, alongside solar power, durability and functionality issues. The solar cells are encapsulated in thin interlayers that are usually composed of a viscoelastic Ethylene-Vinyl Acetate compound, and protected by thin glass and/or plastic layers. This paper investigates the out-of-plane bending response of a full-scale commercial PV module and focuses attention on the shear bonding efficiency of the thin encapsulant for quasi-static and dynamic mechanical considerations. The parametric analytical analysis, carried out in this study for a laminated glass plate, highlights the possible consequences of the viscoelastic shear coupling on the cross-section load-bearing demand in the covers. As a direct effect of severe operational conditions (i.e., ageing, non-uniform/cyclic thermal gradients, humidity, extreme mechanical/thermal loads, etc.) the shear rigidity and adhesion of these films can suffer from repeated/progressive modification and even degradation, and thus induce major stress and deflection effects in the out-of-plane mechanical response of the PV module components. The minimum shear bond efficiency required to prevent mechanical issues is calculated for various configurations of technical interest. Accordingly, it is shown how the quasi-static and dynamic mechanical performance of the system modifies as a function of a more rigid or weak shear coupling.

15.
Sensors (Basel) ; 24(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38544045

ABSTRACT

Trafficability gives tracked vehicles adaptability, stability, and propulsion for various purposes, including deep-sea research in rough terrain. Terrain characteristics affect tracked vehicle mobility. This paper investigates the soil mechanical interaction dynamics between rubber-tracked vehicles and sedimental soils through controlled laboratory-simulated experiments. Focusing on Bentonite and Diatom sedimental soils, which possess distinct shear properties from typical land soils, the study employs innovative user-written subroutines to characterize mechanical models linked to the RecurDyn simulation environment. The experiment is centered around a dual-tracked crawler, which in itself represents a fully independent vehicle. A new three-dimensional multi-body dynamic simulation model of the tracked vehicle is developed, integrating the moist terrain's mechanical model. Simulations assess the vehicle's trafficability and performance, revealing optimal slip ratios for maximum traction force. Additionally, a mathematical model evaluates the vehicle's tractive trafficability based on slip ratio and primary design parameters. The study offers valuable insights and a practical simulation modeling approach for assessing trafficability, predicting locomotion, optimizing design, and controlling the motion of tracked vehicles across diverse moist terrain conditions. The focus is on the critical factors influencing the mobility of tracked vehicles, precisely the sinkage speed and its relationship with pressure. The study introduces a rubber-tracked vehicle, pressure, and moisture sensors to monitor pressure sinkage and moisture, evaluating cohesive soils (Bentonite/Diatom) in combination with sand and gravel mixtures. Findings reveal that higher moisture content in Bentonite correlates with increased track slippage and sinkage, contrasting with Diatom's notable compaction and sinkage characteristics. This research enhances precision in terrain assessment, improves tracked vehicle design, and advances terrain mechanics comprehension for off-road exploration, offering valuable insights for vehicle design practices and exploration endeavors.

16.
Polymers (Basel) ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475274

ABSTRACT

In recent years, composite resin materials have been the most frequently used materials for direct restorations of posterior teeth. These materials have some clinically relevant limitations due to their lack of fracture toughness, especially when used in larger cavities with high volume factors or when utilized as direct or indirect overlays or crown restorations. Recently, short-fiber-reinforced composite materials have been used in bi-structure restorations as a dentine substituting material due to their superior mechanical properties; however, there is no scientific consensus as to whether they can be used as full restorations. The aim of our review was to examine the available literature and gather scientific evidence on this matter. Two independent authors performed a thorough literature search using PubMed and ScienceDirect up until December 2023. This study followed the PRISMA guidelines, and the risk of bias was assessed using the QUIN tool. The authors selected in vitro studies that used short-fiber-reinforced composite materials as complete restorations, with a conventional composite material as a comparison group. Out of 2079 potentially relevant articles, 16 met our inclusion criteria. All of the included studies reported that the usage of short-fiber-reinforced composites improved the restoration's load-bearing capacity. Fifteen of the included publications examined the fracture pattern, and thirteen of them reported a more favorable fracture outcome for the short-fiber-reinforced group. Only one article reported a more favorable fracture pattern for the control group; however, the difference between groups was not significant. Within the limitations of this review, the evidence suggests that short-fiber-reinforced composites can be used effectively as complete restorations to reinforce structurally compromised teeth.

17.
ACS Appl Mater Interfaces ; 16(9): 11997-12006, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38394677

ABSTRACT

The low concentration of water-based lubricants and the high chemical inertness of the additives involved are often regarded as basic norms in the design of liquid lubricants. Herein, a novel liquid superlubricant of an aqueous solution containing a relatively high concentration of salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), is reported for the first time, and the superlubricity stability and load-bearing capacity of the optimized system (MgO0.10/LiTFSI10) are effectively strengthened by the addition of only trace (0.10 wt %) water-chemically active MgO additives. It demonstrates higher applicable loads, lower COF (∼0.004), and stability relative to the base solution. Only a trace amount of MgO additive is needed for the superlubricity, which makes up for the cost and environmental deficiencies of LiTFSI10. The weak interaction region between free water and the outer-layer water of Li+ hydration shells becomes a possible ultralow shear resistance sliding interface; the Mg(OH)2 layer, generated by the reaction of MgO with water, further creates additional weakly interacting interfaces, leading to the formation of an asymmetric contact between the clusters/particles within the hydrodynamic film by moderating the competition between interfacial water and free water, thus achieving high load-bearing macroscopic superlubricity. This study deepens the contribution of electrolyte concentration to ionic hydration and superlubricity due to the low shear slip layer formed by interfacial water competition with water-activated solid additives, providing new insights into the next generation of high load-bearing water-based liquid superlubricity systems.

18.
Environ Res ; 251(Pt 1): 118457, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38382666

ABSTRACT

Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook. These advanced devices detect anomalies, voids, and minute defects in the pile structure with unparalleled granularity. Their effectiveness lies in detection and their capacity to provide real-time feedback on pile health, heralding a shift from reactive to proactive maintenance methodologies. Harvesting data from these nanosensors, data was incorporated into a probabilistic model, executing the reliability index calculations through Monte Carlo simulations. Preliminary outcomes show a commendable enhancement in the predictability of vertical bearing capacity, with the coefficient of variation dwindling by up to 12%. The introduction of nanosensors facilitates instantaneous monitoring and fortifies the long-term stability of pile foundations. This study accentuates the transformative potential of nanosensors in geotechnical engineering.


Subject(s)
Nanotechnology , Reproducibility of Results , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Monte Carlo Method , Construction Materials/analysis , Nanostructures
19.
Small ; 20(25): e2308063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38200674

ABSTRACT

The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine. In simulated body fluid, the resulting fiber has a water content of 40 wt%, while demonstrating strength of ≈120 MPa, a Young's modulus of ≈3 GPa, and a toughness of ≈25 MJ m-3. Additionally, the multicomponent fiber exhibits excellent creep and fatigue resistance, as well as biocompatibility to support cell growth in vitro. These findings suggest that the fiber has potential for engineering high-performance artificial ligament.

20.
Environ Technol ; : 1-11, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234130

ABSTRACT

Soil stabilisation by waste materials has been recently employed to enhance soil engineering properties. The purpose of this study is to compare the impact of utilising sawdust in its raw form versus sawdust ash as a soil stabiliser. This is to determine if sawdust (SD) can be considered as a substitute for sawdust ash (SDA) in order to reduce incineration and air pollution. To fulfil this aim, the Atterberg limits, modified Proctor test, and Direct Shear test were performed on both stabilised and non-stabilised mixtures of clayey soil. The soil was treated with 2%, 5%, 8%, 12%, 15%, and 20% by soil dry weight of both SD and SDA. The findings show that the use of SD and SDA leads to a reduction in the plasticity index and the maximum dry unit weight of the soil while increasing its optimum moisture content. The bearing capacity of the soil was greatest at 5% for both SD and SDA, with SD exhibiting a greater enhancement (31.89%) than SDA. Therefore, it is recommended to utilise SD instead of SDA for soil stabilisation due to its superior effectiveness and less harmful environmental impact.

SELECTION OF CITATIONS
SEARCH DETAIL