Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611237

ABSTRACT

The article deals with the comparison of the bending behavior of cylindrical lattice samples with radially and orthogonally arranged cells made of ABS material. The structures were designed in PTC Creo Parametric 8 software, while four types of lattice structures were evaluated: Rhombus, Cuboidal BCC, Octagon, and Starry, in three material volume fractions: 44, 57, and 70%, together with tubular and rod-shaped samples. The Fused Filament Fabrication (FFF) technique was chosen for the production of ABS plastic samples. Based on the bending tests, the dependences of the force on the deflection were recorded and the obtained data were statistically processed to identify outliers using the Grubbs test. The maximum stresses were calculated and the dependences of the stresses on the volume fractions were plotted. Along with energy absorption, ductility indices were also specified. Although the Rhombus structure appears to be the best based on the ductility indices obtained, on the other hand, the structure showed the lowest values of bending stresses (in the range from 10.6 to 12.6 MPa for volume fractions ranging from 44 to 70%, respectively). Therefore, from a synergic point of view of both factors, stress and ductility, the Starry structure exhibits the best flexural properties among those investigated.

2.
Materials (Basel) ; 16(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37629829

ABSTRACT

In this investigational study, the fracture and bending performance of reinforced concrete beams (R-C-Bs) with varying proportions of plastic waste (PW), considered as fine aggregate (FA), were assessed via experimental and numerical examination. To achieve this aim, altered concrete series were designed, with the aggregate sizes changed within the range of 0 to 25 mm. To enhance the concrete, PW was selected to be used in combination with aggregate material measuring 0 to 5 mm in particle size, as an alternative FA, with proportions of 0%, 5%, 15%, 30%, and 45%. Experiments were performed to examine the performance of the R-C-Bs. It was found that a 30% PW proportion offered the optimum results in terms of displacement capability. Furthermore, ANSYS v.19 software was chosen to form 3D finite element models (F-E-Ms) of R-C-Bs to be compared with the experimental data. The experimental and 3D F-E-M investigations offered remarkably close-fitting bending and rupture performances. Then, a structure was modeled using SAP2000, and the strength of the R-C-Bs was then used in an RC structural model. The results show that the forces on the construction caused reductions while also increasing the PW proportion. Moreover, it was realized that the F-E-M simulations and experiments produced tiny cracks with highly matched formations.

3.
Gels ; 9(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37623113

ABSTRACT

Photoresponsiveness is a promising characteristic of stimulus-responsive materials. Photoresponsiveness can be achieved by incorporating photoresponsive molecules into polymeric materials. In addition, multiple-stimuli-responsive materials have attracted scientists' interest. Among the numerous multiple-stimuli-responsive materials, moisture- and photoresponsive materials are the focus of this report. These stimuli-responsive materials responded to the stimuli synergistically or orthogonally. Unlike most stimulus-responsive materials utilizing moisture and light as stimuli, the materials studied herein switch their photoresponsiveness in the presence of moisture. Appropriate copolymers consisting of hydrophilic acrylamide-based monomers for the main chain and hydrophobic azobenzene moieties switched their bending behaviors at 6-9 wt% water contents. At water contents lower than 6 wt%, the polymeric materials bent away from the light source, while they bent toward the light source at water contents higher than 10 wt%. At a low water content, the bending behaviors can be described on the molecular scale. At a high water content, the bending behavior requires consideration of the phase scale, not only the molecular scale. By controlling the balance between hydrophilicity and hydrophobicity, the switching behavior was achieved. This switching behavior may inspire additional strategies for the application of polymeric material as actuators.

4.
ACS Appl Mater Interfaces ; 15(36): 42241-42250, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650520

ABSTRACT

Nanofibrous scaffolds are widely investigated for tendon tissue engineering due to their porous structure, high flexibility, and the ability to guide cells in a preferred direction. Previous research has shown that providing a microenvironment similar to in vivo settings improves tissue regeneration. Therefore, in this work, ingenious multicomponent nanoyarn scaffolds that mimic the fibrillar and tubular structures of tendons are developed for the first time through electrospinning and bundling nanoyarns followed by electrospinning of a nanofibrous shell around the bundle. Multicomponent nanoyarn scaffolds out of poly(ε-caprolactone) with varying porosity, density, and diameter were successfully produced by coelectrospinning with water-soluble poly(2-ethyl-2-oxazoline) as a sacrificial component. The diameter and fiber orientation of the nanoyarns were successfully tuned based on parameter-morphology models obtained by the design of experiments. Cyclic bending tests were performed, indicating that the flexibility of the multicomponent nanoyarn scaffolds depends on the morphology and can be tuned through controlling the number of nanoyarns in the bundle and the porosity. Indirect and direct cell culture tests using mouse and equine tendon cells revealed excellent cytocompatibility of the nanofibrous products and demonstrated the potential of the nanoyarns to guide the growing cells along the nanofiber direction, which is crucial for tendon tissue engineering.


Subject(s)
Cell Culture Techniques , Nanofibers , Animals , Horses , Mice , Cytoskeleton , Poly A , Tendons
5.
Materials (Basel) ; 16(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770015

ABSTRACT

Superelastic nickel-titanium (NiTi) archwires have become the preferred archwire for orthodontic alignment and the levelling stage due to their ability to exert a light force on teeth throughout a wide range of tooth movement. The magnitude and trend of the force exerted on the malposed tooth is influenced by the orthodontist's consideration of the size and geometry of the NiTi archwire during orthodontic therapy. In this work, a novel approach of a short-term ageing treatment was utilized to modify the magnitude and trend of the bending force of a commercial superelastic NiTi archwire. The bending behavior of the superelastic NiTi archwire was altered by subjecting it to different temperatures in an ageing treatment for 15 min. The bending behavior of the aged NiTi archwire was examined using a three-point and three-bracket setup. The commercial NiTi archwire's bending forces in both the three-point and three-bracket configurations were successfully altered by the 15 min ageing treatment. During unloading in the three-bracket arrangement, the NiTi archwires aged at 490 °C or 520 °C exhibited a lower magnitude and more consistent force compared to the NiTi archwires aged at 400 °C or 430 °C. Ageing the archwire for 15 min at 490 °C produced a suitable size of Ni4Ti3 precipitate, which makes the wire more flexible during bending and reduces the unloading force in the three-bracket bending configuration. The short-term aged NiTi archwire could be used to enhance the force delivery trend to the malposed tooth by lowering the amplitude of the force delivered and sustaining that force throughout the orthodontic treatment duration.

6.
Polymers (Basel) ; 14(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36559912

ABSTRACT

Chinese Paulownia wood has been extensively used in the construction of timber buildings and lightweight sandwich structures. However, the bending and shear behaviors at elevated temperatures were not well understood. A total of 162 specimens were tested to investigate the bending, tangential shear, and radial shear performances of Chinese Paulownia wood under temperatures from 20 to 220 °C. It was found that the bending specimens exhibited ductile failure due to the progressive damage after reaching the peak load, while the tangential and radial shear specimens exhibited brittle shear failure along the shear plane. The elevated temperatures had limited effects on the failure modes. Under the same temperature, the retention rate of the modulus of elasticity is significantly higher than that of the modulus of rupture. Moreover, the bending strength, tangential shear strength, and radial shear strength generally and nonlinearly decreased with the increasing temperature. The EN 1995-1-2 design curve for the shear strength of wood at elevated temperatures is conservative for both the tangential and radial shear specimens. However, the design curve may not be adopted to estimate the tangential shear strength at temperatures higher than 220 °C.

7.
Nanomaterials (Basel) ; 12(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296824

ABSTRACT

Vertically-stacked black phosphorus/molybdenum disulfide (BP/MoS2) heterostructures have broad prospects in flexible electronics. Bending is a common and highly concerned deformation for these flexible devices. However, the discrepancy in structures and properties among the components of 2D heterostructures often induces complex bending deformations. Here, the bending behaviors of BP, MoS2 and BP/MoS2 are investigated based on a molecular dynamics simulation. Compared with the constant bending stiffness of individual BP and MoS2, that of BP/MoS2 varies with the bending angle. Notably, a self-bending configuration induced by the lattice mismatch and size difference is found in BP/MoS2. The corresponding self-bending amplitude depends on the degree of size difference of each component and the "soft/hard" competition between them. Moreover, the size difference leads to a weakened bending stiffness, which is ascribed to the reduction in interlayer interaction. A prediction formula is proposed to evaluate the bending stiffness of BP/MoS2 with the size difference. This finding reveals novel ways for regulating the bending properties of 2D heterostructures, including the bending angle, characteristic size and stacking order. It offers an effective strategy for designing flexible devices with tunable bending performance.

8.
Polymers (Basel) ; 14(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36235949

ABSTRACT

In this study, in order to study the flexural behavior of fiber-reinforced polymer (FRP) bars with reinforced concrete beams under static loads after high-temperature exposure, seven pieces of FRP-reinforced concrete beams were subjected to static bending tests and calculation model derivations. Four-point bending tests were carried out on FRP-reinforced concrete beams after high temperature treatment. The effects of high temperature and types of FRP bars on the cracking load, crack development, deflection and ultimate capacity, and failure mode of concrete beams were investigated. The test results show that the maximum crack width, deflection, and ultimate bearing capacity of GFRP- and CFRP-reinforced concrete beams decrease obviously with a rise in high temperature. After the exposure of 400 °C for 2 h, compared with the behavior of concrete beams at room temperature, the maximum crack width of GFRP and CFRP-reinforced concrete beams increased by 42.9% and 41.7%, respectively, the deflection increases by 103.6% and 22.0%, and the ultimate bearing capacity decrease by 11.9% and 3.9%. Meanwhile, through the analysis of the existing research results and test results, the calculation models for the maximum crack width, deflection, and residual ultimate capacity of FRP-reinforced concrete beams after exposure of high temperature were proposed. For FRP-reinforced concrete beams after high-temperature exposure, the errors between the measured maximum crack width, stiffness, residual bearing capacity, and their corresponding calculated values using the model were mostly less than 10%. The calculated value using the proposed model in this research is in good agreement with the measured value. The mechanical properties of FRP-reinforced high-strength concrete structures after high-temperature exposure can be preliminarily predicted, which provides a new theoretical basis for the application of FRP-reinforced concrete structures.

9.
Materials (Basel) ; 14(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576638

ABSTRACT

This paper aims to analytically derive bending equations, as well as semi-analytically predict the deflection of prismatic SMA beams in the martensite phase. To this end, we are required to employ a simplified one-dimensional parametric model considering asymmetric response in tension and compression for martensitic beams. The model takes into account the different material parameters in martensite twined and detwinned phases as well as elastic modulus depending on the progress of the detwinning process. In addition, the model considers the diverse slope of loading and unloading in martensite detwinned phases favored by tension and compression. To acquire general bending equations, we first solve the pure bending problem of a prismatic SMA beam. Three different phases are assumed in the unloading procedure and the effect of neutral fiber distance from the centerline is also considered during this stage. Then according to the pure bending solution and employing semi-analytical methods, general bending equations of an SMA beam are derived. Polynomial approximation functions are utilized to obtain the beam deflection-length relationship. To validate the attained analytical expressions, several three- and four-point bending tests were conducted for rectangular and circular SMA beams. Experimental data confirm the reasonable accuracy of the analytical results. This work may be envisaged to go deep enough in investigating the response of SMA beams under an arbitrary transverse loading and stress distribution during loading and unloading, as well as findings may be applicable to a good prediction of bending behavior.

10.
ACS Appl Mater Interfaces ; 13(8): 10437-10445, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33606493

ABSTRACT

The formation of zigzags, chevrons, Y-junctions, and line segments is demonstrated in thin films formed from cylindrical morphology silicon-containing conformationally asymmetric rod-coil diblock copolymers and triblock terpolymers under solvent annealing. Directed self-assembly of the block copolymers within trenches yields well-ordered cylindrical microdomains oriented either parallel or transverse to the sidewalls depending on the chemical functionalization of the sidewalls, and the location and structure of concentric bends in the cylinders is determined by the shape of the trenches. The innate etching contrast, the spontaneous sharp bends and junctions, and the range of demonstrated periodicity and line/space ratios make these conformationally asymmetric rod-coil polymers attractive for nanoscale pattern generation.

11.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009160

ABSTRACT

In order to realize the self-centering, high energy consumption, and high ductility of the existing building structure through strengthening and retrofit of structure, a method of reinforced concrete (RC) beam strengthened by using Shape Memory Alloy (SMA) and Engineered Cementitious Composites (ECC) was proposed. Four kinds of specimens were designed, including one beam strengthened with enlarging section area of steel reinforced concrete, one beam strengthened with enlarging section area of SMA reinforced concrete, beam strengthened with enlarging section area of SMA reinforced ECC, and beam strengthened with enlarging section area of steel reinforced ECC; these specimens were manufactured for the monotonic cycle loading tests study on its bending behavior. The influence on the bearing capacity, energy dissipation performance, and self-recovery capacity for each test specimens with different strengthening materials were investigated, especially the bending behavior of the beams strengthened by SMA reinforced ECC. The results show that, compared with the ordinary reinforced concrete beams, strengthening existing RC beam with enlarging section area of SMA reinforced ECC can improve the self-recovery capacity, ductility, and deformability of the specimens. Finally, a revised design formula for the bending capacity of RC beams, strengthened with enlarging sections of ECC, was proposed by considering the tensile capacity provided by ECC, and the calculated values are in good agreement with the experimental value, indicating that the revised formula can be well applied to the beam strengthening with enlarging section of SMA-ECC Materials.

12.
Materials (Basel) ; 13(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261093

ABSTRACT

Structural systems developed from novel materials that are more durable and less prone to maintenance during the service lifetime are in great demand. Due to many advantages such as being lightweight as well as having high strength, corrosion resistance, and durability, the sandwich composites structures, in particular, have attracted attention as favorable materials for speedy and durable structural constructions. In the present research, an experimental investigation is carried out to investigate the flexural response of sandwich beams with a pre-cracked core-upper facesheet interface located at one end of the beam. During the development of the sandwich beams, an initial pre-cracked debond was created between the core and facesheet by placing a Teflon sheet at the interface. Both three-point and four-point flexural tests were conducted to characterize the flexural behavior of the sandwich beams. The effects of the loading rate, core thickness, and placement of the initial interfacial crack under a compressive or tensile stress state on the response and failure mechanism of Carbon Fiber-Reinforced Polymer (CFRP)/Polyurethane (PU) foam sandwich beams were investigated. It was found that the crack tip of the initial debonding between the upper facesheet and the core served as a damage initiation trigger followed by the fracture failure of the core due to the growth of the initial crack into the core in an out-of-plane mode. Finally, this leads to facesheet damage and rupture under flexural loadings. An increase in the core thickness resulted in a higher peak load, but the failure of the sandwich beam was observed to occur at significantly lower displacement values. It was found that the behavior of sandwich beams with higher core thickness was loading rate-sensitive, resulting in stiffer response as the loading rate was increased from 0.05 to 1.5 mm/s. This change in stiffness (10-15%) could be related to the squeezing of all pore space, resulting in the collapse of cell walls and thereby making the cell behave as a solid material. As a result, the occurrence of the densification phase in thick core beams occurs at a faster rate, which in turn makes the thick cored sandwich beams exhibit loading rate-sensitive behavior.

13.
J Biomech ; 108: 109856, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32635992

ABSTRACT

Excellent bending behavior is evaluated as the primary factor during the design of biodegradable metal cerebral vascular stents (BMCVSs), which enables vascular stents to be successfully delivered to the targeted location and avoids unnecessary damage to blood vessels. Unfortunately, this bending behavior has been barely investigated which limits the design of BMCVSs with optimal structures. Herein, six BMCVSs were designed and their bending process were simulated using finite element analysis (FEA). Then, the effects of the stent bridge connection type and structure on the bending behavior were systematically analyzed and an universal mathematical model was further established, in which the influence of the structure parameters of the stent bridge on the flexibility of stents was considered. After that, the bending mechanism of the high-stress zone of the bridge was investigated. Finally, the causes and effects of the self-contacting phenomenon as well as the inner-stent protrusion phenomenon in the bending state were analyzed theoretically, and corresponding solutions were proposed to optimize the design of stents. The numerical results show that the stents with the dislocation-line W-shaped unit have better flexibility than the other stents. The flexibility is positively correlated to the cube of the length of linear part and to the square of the curvature of curved part. The self-contacting phenomenon of the bridge during bending can constrain the formation of inner-stent protrusion, which can eliminate the negative effects of the implanted stents on the hemodynamics in blood vessels. This study is expected to provide practical guidance for the structural design of BMCVSs for clinical applications.


Subject(s)
Models, Theoretical , Stents , Finite Element Analysis , Hemodynamics , Prosthesis Design , Stress, Mechanical
14.
Materials (Basel) ; 12(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641892

ABSTRACT

A study concerning the flexural behavior of glass beams reinforced with steel fibers is presented in this paper. Two types of steel fibers were used for reinforcement, made of high strength and stainless steel. The coupling effect of the two materials was studied in terms of energy dissipation and failure loads, by comparing the elastic limits and the post-elastic behaviors of the reinforced glass beams. Results demonstrated that it is possible to increase the overall structural safety of a steel fiber reinforced glass beam. The relationship between the bending force and deflections was initially linear, however, following the opening of first cracks in the glass, the reinforcement steel material was able to withstand the tensile stresses, governing the overall post-elastic phase.

15.
ACS Appl Mater Interfaces ; 9(8): 7752-7760, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28186403

ABSTRACT

Biologically inspired dry adhesion has recently become a research hot topic because of its practical significance in scientific research and instrumental technology. Yet, most of the current studies merely focus on borrowing the concept from some finer biological contact elements but lose sight of the foundation ones that play an equally important role in the adhesion functionality. Inspired by the bending behavior of the flexible foundation element of a gecko (lamellar skin) in attachment motion, in this study, a new type of dry adhesive structure was proposed, wherein a mushroom-shaped micropillar array behaving as a strongly adhesive layer was engineered on a discretely supported thin film. We experimentally observed and analytically modeled the structural deformation and found that the energy penalty could be largely reduced because of the partial shift from pillar bending to film bending. Such behavior is very analogous in functionality to the lamellar skin in a gecko's pads and is helpful in effectively limiting the damage of the contact interface, thus generating enhanced adhesion even on a rough surface.

SELECTION OF CITATIONS
SEARCH DETAIL