Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Ecotoxicol Environ Saf ; 284: 116904, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39168083

ABSTRACT

Plant lead (Pb) tolerance and accumulation are key characteristics affecting phytoremediation efficiency. Bermudagrass is an excellent candidate for the remediation of Pb-polluted soil, and it needs to be mowed regularly. Here, we explored the effect of different mowing frequencies on the remediation of Pb-contaminated soil using bermudagrass. Mowing was found to decrease the biomass and photosynthetic efficiency of bermudagrass under Pb stress, thereby inhibiting its growth. Although mowing exacerbated membrane peroxidation, successive mowing treatments alleviated peroxidation damage by regulating enzymatic and nonenzymatic systems. A comprehensive evaluation of Pb tolerance revealed that all the mowing treatments reduced the Pb tolerance of bermudagrass, and a once-per-month mowing frequency had a less negative effect on Pb tolerance than did more frequent mowing. In terms of Pb enrichment, mowing significantly increased the Pb concentration, total Pb accumulation, translocation factor (TF), and bioenrichment factor (BCF) of bermudagrass. The total Pb accumulation was greatest under the once-a-month treatment, while the TF and BCF values were greatest under the three-times-a-month mowing treatment. Additionally, the decrease in soil pH and DOC were significantly correlated with the soil available Pb content and plant Pb accumulation parameters. The results showed that changes in the rhizosphere are crucial factors regulating Pb uptake in bermudagrass during mowing. Overall, once-a-month mowing minimally affects Pb tolerance and maximizes Pb accumulation, making it the optimal mowing frequency for soil Pb remediation by bermudagrass. This study provides a novel approach for the remediation of Pb-contaminated soil with bermudagrass based on mowing.


Subject(s)
Biodegradation, Environmental , Lead , Soil Pollutants , Soil Pollutants/metabolism , Lead/metabolism , Lead/toxicity , Cynodon/metabolism , Cynodon/growth & development , Photosynthesis/drug effects , Biomass , Soil/chemistry
2.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902617

ABSTRACT

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Subject(s)
Acclimatization , Cynodon , Photosynthesis , Plant Leaves , Cynodon/physiology , Cynodon/genetics , Cynodon/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/genetics , Electron Transport , Gene Expression Regulation, Plant , Nitrogen/metabolism , Plant Roots/physiology , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism
3.
Plant Physiol Biochem ; 213: 108857, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905728

ABSTRACT

As an important warm-season turfgrass species, bermudagrass (Cynodon dactylon L.) flourishes in warm areas around the world due to the existence of the C4 photosynthetic pathway. However, how C4 photosynthesis operates in bermudagrass leaves is still poorly understood. In this study, we performed single-cell RNA-sequencing on 5296 cells from bermudagrass leaf blades. Eight cell clusters corresponding to mesophyll, bundle sheath, epidermis and vascular bundle cells were successfully identified using known cell marker genes. Expression profiling indicated that genes encoding NADP-dependent malic enzymes (NADP-MEs) were highly expressed in bundle sheath cells, whereas NAD-ME genes were weakly expressed in all cell types, suggesting C4 photosynthesis of bermudagrass leaf blades might be NADP-ME type rather than NAD-ME type. The results also indicated that starch synthesis-related genes showed preferential expression in bundle sheath cells, whereas starch degradation-related genes were highly expressed in mesophyll cells, which agrees with the observed accumulation of starch-filled chloroplasts in bundle sheath cells. Gene co-expression analysis further revealed that different families of transcription factors were co-expressed with multiple C4 photosynthesis-related genes, suggesting a complex transcription regulatory network of C4 photosynthesis might exist in bermudagrass leaf blades. These findings collectively provided new insights into the cell-specific expression patterns and transcriptional regulation of photosynthetic genes in bermudagrass.


Subject(s)
Cynodon , Gene Expression Regulation, Plant , Photosynthesis , Plant Leaves , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Cynodon/genetics , Cynodon/metabolism , Single-Cell Analysis/methods , Sequence Analysis, RNA , Mesophyll Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics
4.
Transl Anim Sci ; 8: txae067, 2024.
Article in English | MEDLINE | ID: mdl-38712326

ABSTRACT

Bermudagrass (Cynodon dactylon L.) stockpiling and cool-season annual pastures can extend grazing seasons in cow-calf operations and reduce winter feeding costs, but less is known about how these practices interact and their effect on producer profitability. Data from a completely randomized-design experiment in South-Central Oklahoma were collected on three grazing systems for cows and calves: bermudagrass pasture (CONTROL), stockpiled bermudagrass and interseeded cool-season pasture (SPINT), and stockpiled bermudagrass plus cropland no-till seeded with a summer cover-crop followed by cool-season annuals (SPCROP). A mixed model was used to estimate the effects of grazing system on weaning weights, total hay, and total range cubes (crude protein [CP] = 30%) fed in each system. Enterprise budgeting was used to calculate the expected net return of each system. Weaning weight did not vary between systems (P = 0.6940), resulting in similar revenues. Relative to other treatments, the quantity of cubes fed in the CONTROL system were significantly higher (P < 0.0001) while hay fed was significantly higher in the SPCROP system (P = 0.0036). Increased machinery costs, seed costs, and fertilization requirements in bermudagrass stockpiling, interseeding, and cropland production outweighed the cost savings associated with less feeding. Total costs were $446 ha-1 ($722 hd-1), $451 ha-1 ($732 hd-1), and $553 ha-1 ($895 ha-1) for the CONTROL, SPINT, and SPCROP systems, respectively. Overall, the CONTROL system was $3.13 ha-1 ($5.08 hd-1) and $98.91 ha-1 ($160.10 hd-1) more profitable than the SPINT and SPCROP systems.

5.
Pest Manag Sci ; 80(9): 4459-4469, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38662596

ABSTRACT

BACKGROUND: Rhodesgrass mealybug, Antonina graminis, is a serious pest of ultradwarf hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) on golf course putting greens. A. graminis feeding damage appears as extensive yellowing of turfgrass blades and heavy thinning from mid-to-late summer into fall. Putting greens are intensively managed areas of the golf course where fertilizers are routinely applied to maintain and enhance turfgrass quality, playability and aesthetics. We hypothesize that A. graminis populations can be minimized by reducing nitrogen (N) fertilizer and then effectively managed using systemic insecticides. The objective of this study was to determine the effects of various levels of N fertilizer and flupyradifurone on the A. graminis population and turfgrass quality on the golf course putting green. The treatments were low, medium, and high N fertilizer rates with and without insecticide (flupyradifurone). RESULTS: Applying a high dose of N fertilizer improved turfgrass quality without increasing A. graminis densities on the golf course green. Although flupyradifurone application reduced A. graminis densities regardless of N fertilizer treatments, suppression of A. graminis densities improved at the high fertilizer dose with flupyradifurone. Additionally, the turfgrass quality on the putting green improved with high N fertilizer alone, regardless of flupyradifurone application. CONCLUSION: A. graminis populations can be managed using moderate to high levels of N fertilizer and applying a systemic insecticide. The low nitrogen fertilizer did not effectively reduce the A. graminis densities on the putting green. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Fertilizers , Golf , Hemiptera , Insecticides , Animals , Fertilizers/analysis , Insecticides/pharmacology , Hemiptera/drug effects , Hemiptera/growth & development , Insect Control/methods , Cynodon/growth & development , Nitrogen , Pyridines , 4-Butyrolactone/analogs & derivatives
6.
J Econ Entomol ; 117(3): 1047-1056, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38665094

ABSTRACT

Rhodesgrass mealybug, Antonina graminis Maskell (Hemiptera: Pseudococcidae), is an emerging pest of turfgrass in Georgia golf course putting greens. Because the feeding damage of A. graminis severely affects the aesthetics of the putting surface, it is necessary to understand the phenology of A. graminis on putting greens. To develop management strategies, the temporal emergence of crawlers is determined; however, a sampling tool for A. graminis crawlers on putting greens has not been developed. Thus, the objectives were to determine (i) the phenology of A. graminis and turfgrass quality and (ii) the best trap types for sampling crawlers on the putting greens in Georgia. From 2019 to 2022, 10-20 turfgrass plugs were sampled from the putting greens at biweekly intervals from the spring to fall. The numbers of crawlers, sessile nymphs, and adults of A. graminis were quantified from these plug samples. To determine the best trap types for sampling crawlers, 6 trap types were evaluated on the putting greens in 2021 and 2022. In the spring, the A. graminis densities remained low until June or July, then all stages of A. graminis increased. In the late fall and winter, A. graminis densities declined and remained low. The turfgrass quality improved temporally from April to June but progressively declined from the mid-to-late summer to fall. Significantly greater numbers of crawlers were sampled in the paper-folded sticky card method than in the turfgrass plug method. Thus, sticky traps could be used to sample crawlers for pest management decision.


Subject(s)
Hemiptera , Insect Control , Nymph , Animals , Nymph/growth & development , Nymph/physiology , Georgia , Golf , Poaceae , Seasons
7.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561649

ABSTRACT

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Subject(s)
Antioxidants , Cynodon , Cynodon/physiology , Antioxidants/metabolism , Droughts , Plant Breeding , Photosynthesis/genetics , Water/metabolism , Gene Expression
8.
PeerJ ; 12: e16985, 2024.
Article in English | MEDLINE | ID: mdl-38436009

ABSTRACT

Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.


Subject(s)
Cynodon , Hydrogen Peroxide , Oxidation-Reduction , Antioxidants , Cytokinins , Sucrose
9.
Phytopathology ; 114(1): 155-163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37335121

ABSTRACT

Spring dead spot (SDS) (Ophiosphaerella spp.) is a soilborne disease of warm-season turfgrasses grown where winter dormancy occurs. The edaphic factors that influence where SDS epidemics occur are not well defined. A study was conducted during the spring of 2020 and repeated in the spring of 2021 on four 'TifSport' hybrid bermudagrass (Cynodon dactylon × transvaalensis) golf course fairways expressing SDS symptoms in Cape Charles, VA, U.S.A. SDS within each fairway was mapped from aerial imagery collected in the spring of 2019 with a 20 MP CMOS 4k true color sensor mounted on a DJI Phantom 4 Pro drone. Three disease intensity zones were designated from the maps (low, moderate, high) based on the density of SDS patches in an area. Disease incidence and severity, soil samples, surface firmness, thatch depth, and organic matter measurements were taken from 10 plots within each disease intensity zone from each of the four fairways (n = 120). Multivariate pairwise correlation analyses (P < 0.1) and best subset stepwise regression analyses were conducted to determine which edaphic factors most influenced the SDS epidemic within each fairway and each year. Edaphic factors that correlated with an increase in SDS or were selected for the best fitting model varied across holes and years. However, in certain cases, soil pH and thatch depth were predictors for an increase in SDS. No factors were consistently associated with SDS occurrence, but results from this foundational study of SDS epidemics can guide future research to relate edaphic factors to SDS disease development.


Subject(s)
Ascomycota , Plant Diseases , Seasons , Cynodon , Soil
10.
Pest Manag Sci ; 80(4): 2162-2169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148292

ABSTRACT

BACKGROUND: Using cover crops in organic vineyards can provide many advantages, including weed suppression. However, their effectiveness may depend on the weed community, the cover crop species and the termination method. The most common practice for cover crop termination is shredding, but rapid residue decomposition can allow noxious species like Cynodon dactylon to proliferate during summer and compete with the vines. The use of roller-crimpers as an alternative method can be effective in some cropping systems, but no studies have focused on their use in the inter-row of vineyards. The objective of this study was to evaluate the effectiveness of seven cover crops (spontaneous, Avena strigosa, Hordeum vulgare, Lolium multiflorum, Phacelia tanacetifolia, Sinapis alba and X Triticosecale) and two termination methods (shredding or roller-crimper) in managing C. dactylon during summer. RESULTS: In 2020, rolled A. strigosa, P. tanacetifolia and the spontaneous flora limited the coverage of C. dactylon more than shredding (increases of 3% and 18% in C. dactylon cover from July to September in rolled and shredded cover crops, respectively), while in 2021, rolling was better than shredding for all cover crop species in September (5% and 18% increases, respectively). CONCLUSION: Roller-crimping cover crops was an effective method to control C. dactylon in vineyard inter-rows but it did not consistently work for all cover crops in both years. Our study is one of the first to test the efficacy of roller-crimpers to manage summer weeds in vineyards. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cynodon , Plant Weeds , Farms , Seasons , Crops, Agricultural
11.
Plant Dis ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943508

ABSTRACT

Hybrid bermudagrass (Cynodon dactylon × C. transvaalensis) is widely used as turf in southern and transition zones of China. From June to September in 2022, an unknown disease was consistently observed on hybrid bermudagrass in different regions of Nanjing China, exhibiting distinct symptoms of leaf necrosis, severe root rot and circular or irregular necrotic patches with 20-300 cm in diameter. In this study, culture -independent and dependent methods were used to elucidate the dominant fungal pathogens associated with the disease. Basidiomycota and Marasmiellus were shown to be the dominant phyla (51.96%-70.60%) and genera (50.09%-69.84%) in the symptomatic samples. A total of 128 fungal strains were isolated from symptomatic root tissues, and 40 strains representing the largest proportion (31.25%), were identified as Marasmiellus mesosporus, based on the morphological characteristics, phylogenetic analysis of ITS and LSU rDNA region, and pathogenicity testing. Temperature sensitivity tests revealed that M. mesosporus grew well at high temperature (growth rate of 13.74 mm/d at 36 ℃). To our knowledge, this is the first report of M. mesosporus causing root rot disease on hybrid bermudagrass during hot summer months. The study will have important implications for the management of the disease.

12.
Animals (Basel) ; 13(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37889783

ABSTRACT

Hominy feed (HF) has been evaluated in feedlot and dairy rations but has not been evaluated as a supplemental energy source for lactating beef cows. The objective of this study was to determine the effect of level of HF supplementation on intake, digestibility, ruminal fermentation characteristics, and in situ dry matter (DM) disappearance of bermudagrass hay. Five ruminally cannulated lactating beef cows (body weight (BW) = 596 kg, SE = 13.9) were used in an experiment with a 5 × 5 Latin square design. Treatments were a bermudagrass hay-basal diet with low HF (LH; 0.25% BW), medium HF (MH; 0.50% BW), low ground corn (LC; 0.25% BW), medium ground corn (MC; 0.50% BW) and no supplement (CON). Cows were housed individually, and supplements were offered at 0800 daily. Hay was offered to maintain 10% refusal. Periods were 16-d, with 10 d for adaptation. Ruminal fluid was sampled on d 14 of each period for measurement of pH, volatile fatty acids, and rumen ammonia-N. An in situ degradation experiment for bermudagrass hay was completed for each diet. Hay dry-matter intake (DMI % BW) was not affected (p = 0.14) by supplement, but total DMI (DMI % BW) was greater (p ≤ 0.05) in MH and MC compared to LH and CON. Digestible DMI % BW was greater (p = 0.05) in MH compared to LC, MC was intermediate, and LH and CON were lesser (p ≤ 0.01) than all other diets. Dry-matter fill, passage rate, and retention time did not differ by diet (p ≥ 0.31). A diet × time interaction was observed for ammonia-N (p = 0.0002), and propionate (p = 0.02) time effects were observed for other parameters, but no diet effects. Bermudagrass hay's potentially degradable fraction was greater (p ≤ 0.05) in LH than MH and CON, but effective DM degradability was not different (p = 0.39) among diets. Overall, no diets reduced hay intake or disappearance compared to CON; therefore, no negative associative effects were observed from any of the supplements at the levels offered in this study.

13.
Front Plant Sci ; 14: 1164534, 2023.
Article in English | MEDLINE | ID: mdl-37528987

ABSTRACT

Common bermudagrass [Cynodon dactylon (L.) Pers.] has higher utilization potential on saline soil due to its high yield potential and excellent stress tolerance. However, key functional genes have not been well studied partly due to its hard transformation. Here, bermudagrass "Wrangler" successfully overexpressing CdWRKY2 exhibited significantly enhanced salt and ABA sensitivity with severe inhibition of shoot and root growth compared to the transgenic negative line. The reduced auxin accumulation and higher ABA sensitivity of the lateral roots (LR) under salt stress were observed in CdWRKY2 overexpression Arabidopsis lines. IAA application could rescue or partially rescue the salt hypersensitivity of root growth inhibition in CdWRKY2-overexpressing Arabidopsis and bermudagrass, respectively. Subsequent experiments in Arabidopsis indicated that CdWRKY2 could directly bind to the promoter region of AtWRKY46 and downregulated its expression to further upregulate the expression of ABA and auxin pathway-related genes. Moreover, CdWRKY2 overexpression in mapk3 background Arabidopsis could partly rescue the salt-inhibited LR growth caused by CdWRKY2 overexpression. These results indicated that CdWRKY2 could negatively regulate LR growth under salt stress via the regulation of ABA signaling and auxin homeostasis, which partly rely on AtMAPK3 function. CdWRKY2 and its homologue genes could also be useful targets for genetic engineering of salinity-tolerance plants.

14.
Biometals ; 36(6): 1377-1390, 2023 12.
Article in English | MEDLINE | ID: mdl-37530928

ABSTRACT

Zinc (Zn) is a vital element for plant growth and development, however, excessive Zn is toxic to plants. Common bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid bermudagrass (C. dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) are widely used turfgrass species with strong tolerance to diverse abiotic stresses, including excessive Zn2+ stress. However, the variation of zinc tolerance and accumulation in different bermudagrass cultivars remain unclear. In this study, we systematically analyzed the growth performance, physiological index and ion concentration in eight commercial cultivars of common and hybrid bermudagrass under different concentration of Zn2+ treatments using pot experiments. The results indicated that four cultivars of common bermudagrass could tolerate 20 mM Zn2+, whereas four cultivars of hybrid bermudagrass could only tolerate 10 mM Zn2+. Among the four common bermudagrass cultivars, cultivar Guanzhong and Common showed stronger Zn tolerance and accumulation abilities than other two cultivars. Further analyses of the expression of selected Zn homeostasis-related genes indicated that bermudagrass cultivars with stronger tolerance to excessive Zn have at least one expression-elevated gene involved in Zn homeostasis. These results not only expanded our understanding of Zn tolerance and accumulation in bermudagrass but also facilitated the application of commercial bermudagrass cultivars in phytoremediation of Zn pollution.


Subject(s)
Cynodon , Zinc , Cynodon/genetics , Cynodon/metabolism , Zinc/metabolism , Biodegradation, Environmental
15.
Front Plant Sci ; 14: 1165707, 2023.
Article in English | MEDLINE | ID: mdl-37448869

ABSTRACT

Because of its excellent stress resistance and forage quality, the forage bermudagrass hybrid population had attracted the attention of scientific researchers in recent years. Studying its diversity could promote the breeding of desirable varieties. The variability in agronomic traits including fresh weight, dry weight, ash content, crude protein content, crude fat, phosphorus content, and relative feed value for 56 bermudagrass was investigated using Wrangler as an experimental reference. Grey correlation analysis and cluster analysis were employed to screen bermudagrass with high yield and superior quality. WCF-34 had the highest 2-year fresh weight (109,773.3 kg/ha), WCF-37 had the highest 2-year dry weight (31,951.6 kg/ha), WCF-24 had the lowest Ash content (7.46%), WCF-26 had the highest crude protein content (16.27%), WCF-27 had the highest curde fat content (3.58%), WCF-13 had the highest P content (0.45%), and WCF-42 had the highest relative feed value (95.32). Combining the results of grey relational analysis and cluster analysis, WCF-42, WCF-34, WCF-38, WCF-37, and WCF-40 were selected as high-quality bermudagrass. Through comprehensive analysis of the agronomic characters of bermudagrass, five bermudagrass were selected, the outcomes of this study would provide a theoretical basis for the breeding and genetic enhancement of bermudagrass.

16.
Bull Environ Contam Toxicol ; 111(1): 1, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37335383

ABSTRACT

Pioneer habitat-adapted bermudagrass is prevalent in the water-level-fluctuating zone of the Three Gorges Reservoir area. This study was performed to explore the response characteristics of dissolved organic matter (DOM) qualities to bermudagrass decomposition and their regulation in the distribution and release of mercury (Hg) and methylmercury (MeHg) in the soil-water system. Compared to the control, the bermudagrass decomposition resulted in a great increase in the protein-like components in the water in the initial stages (p < 0.01), but it also greatly reduced the humification degree of water DOM (p < 0.01). However, it accelerated the consumption of protein-like components, the humification rate, and the synthesis of humic-like DOM in the water over time. This changing pattern of the DOM qualities resulted in an initial elevation and a subsequent great decrease in the dissolved Hg and MeHg concentrations in the pore water, which ultimately reduced their release levels into the overlying water by 26.50% and 54.42%, respectively, compared to the control. Our results indicate the potential inhibitory effects of short-term bermudagrass decomposition caused by flooding and how decomposition affects the release of total Hg and MeHg by shaping the DOM qualities, and they have implications for similar aquatic systems in which herbaceous plants are frequently decomposed after submergence.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Mercury/analysis , Water , Environmental Monitoring , Water Pollutants, Chemical/analysis , Ecosystem , Dissolved Organic Matter , Plants , China
17.
Front Plant Sci ; 14: 1165567, 2023.
Article in English | MEDLINE | ID: mdl-37180403

ABSTRACT

Introduction: Potassium and phosphorus are essential macronutrients for plant growth and development. However, most P and K exist in insoluble forms, which are difficult for plants to directly absorb and utilize, thereby resulting in growth retardation of plants under P or K deficiency stress. The Aspergillus aculeatus fungus has growth-promoting characteristics and the ability to dissolve P and K. Methods: Here, to investigate the physiological effects of A. aculeatus on bermudagrass under P or K deficiency, A. aculeatus and bermudagrass were used as experimental materials. Results and discussion: The results showed that A. aculeatus could promote tolerance to P or K deficiency stress in bermudagrass, decrease the rate of leaf death, and increase the contents of crude fat as well as crude protein. In addition, A. aculeatus significantly enhanced the chlorophyll a+b and carotenoid contents. Moreover, under P or K deficiency stress, bermudagrass inoculated with A. aculeatus showed higher N, P, and K contents than non-inoculated plants. Furthermore, exogenous A. aculeatus markedly decreased the H2O2 level and CAT and POD activities. Based on our results, A. aculeatus could effectively improve the forage quality of bermudagrass and alleviate the negative effects of P or K deficiency stress, thereby playing a positive economic role in the forage industry.

18.
J Plant Physiol ; 286: 154006, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37196413

ABSTRACT

Calcineurin B-like-interacting protein kinase (CIPK) is a serine/threonine kinase, which transmits the Ca2+ signal sensed by CBL proteins. A CdtCIPK21 showing highly identical to OsCIPK21 in rice was isolated from triploid bermudagrass (Cynodon dactylon × Cynodon transvaalensis). CdtCIPK21 transcript could be detected in roots, rhizomes, stems, stolons, and leaves, with highest level in roots. It was induced by salinity, dehydration and chilling, but reduced by ABA treatment. Transgenic rice plants overexpressing CdtCIPK21 had decreased salt and drought tolerance as well as ABA sensitivity but increased chilling tolerance. Lower SOD and CAT activities was observed in transgenic lines under salinity and drought stress conditions, but higher levels under chilling stress. Similarly, lower levels of proline concentration and P5CS1 and P5CS2 transcripts were maintained in transgenic lines under salinity and drought stresses, and higher levels were maintained under chilling. In addition, transgenic lines had lower transcript levels of ABA-independent genes (OsDREB1A, OsDREB1B, and OsDREB2A) and ABA responsive genes (OsLEA3, OsLIP9, and OsRAB16A) under salinity and drought but higher levels under chilling compared with WT. The results suggest that CdtCIPK21 regulates salt and drought tolerance negatively and chilling tolerance positively, which are associated with the altered ABA sensitivity, antioxidants, proline accumulation and expression of ABA-dependent and ABA-independent stress responsive genes.


Subject(s)
Cynodon , Gene Expression Regulation, Plant , Oryza , Cynodon/genetics , Drought Resistance , Droughts , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Proline/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/genetics , Triploidy
19.
Microorganisms ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37110285

ABSTRACT

A two-year study was conducted in bermudagrass hay fields in central Alabama to estimate the potential of plant growth-promoting rhizobacteria (PGPR) as a tool for sustainable agriculture in forage management. This study compared the effects of two treatments of PGPR, applied with and without lowered rates of nitrogen, to a full rate of nitrogen fertilizer in a hay production system. The PGPR treatments included a single-strain treatment of Paenibacillus riograndensis (DH44), and a blend including two Bacillus pumilus strains (AP7 and AP18) and a strain of Bacillus sphaericus (AP282). Data collection included estimates of forage biomass, forage quality, insect populations, soil mesofauna populations, and soil microbial respiration. Applications of PGPR with a half rate of fertilizer yielded similar forage biomass and quality results as that of a full rate of nitrogen. All PGPR treatments increased soil microbial respiration over time. Additionally, treatments containing Paenibacillus riograndensis positively influenced soil mesofauna populations. The results of this study indicated promising potential for PGPR applied with lowered nitrogen rates to reduce chemical inputs while maintaining yield and quality of forage.

20.
Chem Biodivers ; 20(6): e202201104, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37106274

ABSTRACT

Bermudagrass (Cynodon dactylon) is a widely used warm season lawn grass. Cuticular wax covering the surface of plant leaves plays an important role in helping plants resist biotic and abiotic stresses. We analyzed the changes of cuticle wax in 25 bermudagrass populations from different longitude and latitude gradients, in order to verify how environmental conditions affect the structure and chemical composition of cuticle wax. Five wax components were identified, including alkanes, esters, alkenes, aldehydes and primary alcohols. The wax characteristics were divided into two principal components, explaining 58.2 % and 66.7 % of the total variability in latitude and longitude, even some populations had a certain correlation with each other. Pearson correlation analysis further showed that the total wax coverage, wax component content and antioxidant enzyme activity of bermudagrass populations on the latitudinal gradient had different responses to environmental factors. Finally, nineteen key genes involved in wax biosynthesis, redox and photosynthesis were identified and verified by RT-qPCR. The results showed that the responses of bermudagrass in different populations to climate change were quite different, which was of great significance for the evolution of bermudagrass populations.


Subject(s)
Cynodon , Waxes , Cynodon/genetics , Waxes/chemistry , Acclimatization , Plant Leaves/chemistry , China
SELECTION OF CITATIONS
SEARCH DETAIL