Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37410327

ABSTRACT

Wastewater treatment and simultaneous production of value-added products with microalgae represent a sustainable alternative. Industrial wastewater, characterized by high C/N molar ratios, can naturally improve the carbohydrate content in microalgae without the need for any external source of carbon while degrading the organic matter, macro-nutrients, and micro-nutrients. This study aimed to understand the treatment, reuse, and valorization mechanisms of real cooling tower wastewater (CWW) from a cement-processing industry mixed with domestic wastewater (DW) to produce microalgal biomass with potential for synthesis of biofuels or other value-added products. For this purpose, three photobioreactors with different hydraulic retention times (HRT) were inoculated simultaneously using the CWW-DW mixture. Macro- and micro-nutrient consumption and accumulation, organic matter removal, algae growth, and carbohydrate content were monitored for 55 days. High COD (> 80%) and macronutrient removals (> 80% of N and P) were achieved in all the photoreactors, with heavy metals below the limits established by local standards. The best results showed maximum algal growth of 1.02 g SSV L-1 and 54% carbohydrate accumulation with a C/N ratio of 31.24 mol mol-1. Additionally, the harvested biomass presented a high Ca and Si content, ranging from 11 to 26% and 2 to 4%, respectively. Remarkably, big flocs were produced during microalgae growth, which enhanced natural settling for easy biomass harvesting. Overall, this process represents a sustainable alternative for CWW treatment and valorization, as well as a green tool for generating carbohydrate-rich biomass with the potential to produce biofuels and fertilizers.

2.
Polymers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771826

ABSTRACT

Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.

3.
Environ Technol ; 44(12): 1863-1876, 2023 May.
Article in English | MEDLINE | ID: mdl-34898377

ABSTRACT

This work studied the formation of aggregates used for wastewater treatment in high-rate algal ponds (HRAP). For this, the establishment of microalgae-bacteria aggregates in these systems was evaluated, considering strategies for the inoculation and start-up. Two HRAP were operated in parallel, at first in batch mode and then in continuous flow. The wastewater treatment was efficient, with removal rates around 80% for COD and N-ammoniacal. Volatile suspended solids and chlorophyll for the culture grew continuously reached a concentration of 548 ± 11 mg L-1 and 7.8 mg L-1, respectively. Larger photogranules were observed when the system was placed in a continuous regime. The protein fraction of extracellular polymeric substances was identified as a determinant in photogranules formation. During the continuous regime, more than 50% of the biomass was higher than 0.2 mm, flocculation efficiency of 78 ± 6%, and the volumetric sludge index of 32 ± 5 mL g-1. The genetic sequencing showed the growth of cyanobacteria in the aggregate and the presence of microalgae from the chlorophytes and diatoms groups in the final biomass.


Subject(s)
Microalgae , Wastewater , Waste Disposal, Fluid , Ponds/microbiology , Bacteria , Biomass
4.
Bioresour Technol ; 322: 124525, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33333395

ABSTRACT

This study aimed to produce fungal biomass from agro-industrial by-products for later use as a bioflocculant in the Spirulina harvesting. The production of fungal biomass from Aspergillus niger was carried out in submerged fermentation, using media composed of wheat bran and/or potato peel. Fungal biomass was used as a bioflocculant in Spirulina cultures carried out in closed 5 L reactors and 180 L open raceway pond operated in batch and semi-continuous processes, respectively. Fungal biomass was able to harvest Spirulina platensis cultures with efficiencies between 90% and 100% after 2 h of sedimentation in some experimental conditions. Efficiencies higher than 80% were achieved in most tests without pH adjustment during bioflocculations, which shows that the developed method is a promising alternative to traditional Spirulina harvesting techniques. Above all, the development of an eco-friendly fungal-assisted bioflocculation process increases the sustainability of Spirulina biomass for different applications, especially biofuels.


Subject(s)
Spirulina , Biofuels , Biomass , Ponds
5.
Bioresour Technol ; 294: 122167, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563740

ABSTRACT

One of the hurdles of renewable energy production from photosynthetic microorganisms is separating the biomass from water in cultures. Bioflocculation with filamentous fungus Aspergillus niger, an alternative low-cost method used for such separation, was studied with four cyanobacteria. Cocultures with Spirulina maxima and Synechococcus subsalsus resulted in bioflocculation efficiencies up to 94%, while with Anabaena variabilis and Anabaena siamensis bioflocculation did not occur. S. subsalsus was selected to evaluate the effect of cyanobacterial initial concentration, fungal:cyanobacterial ratio, carbon supplementation, and pH on biomass densification. Bioflocculation efficiencies up to 98% in 48 h were obtained with fungal:cyanobacterial ratio 1:5 and carbon supplementation. Despite the lower efficiency (54%), the highest concentration factor of S. subsalsus suspension (62.8 - from 0.9 to 56.5 g/L) was obtained with ratio 1:5 without supplementation. This result was attributed to the smaller pellet diameter (2.5 mm) and indicated that lower pellet growth is better for biomass densification.


Subject(s)
Aspergillus niger , Synechococcus , Biomass , Carbon , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL