Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.382
Filter
1.
Exp Appl Acarol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088130

ABSTRACT

Tomato crops are attacked by several pests, including mites. While the main predatory mites are not effective enough to control mite pests, recent studies have shown encouraging results with the European endemic phytoseiid Typhlodromus (Anthoseius) recki. The first objective of the study was to assess the ability of this species to disperse along the tomato stem, considering six genotypes of Solanum lycopersicum, S. peruvianum and S. cheesmaniae with contrasted trichome numbers and types of stem trichomes, accuratetly characterised in a previous study. The second objective was to determine how predator morphological traits can explain dispersal along the tomato stem. For this, ambulatory dispersal ability of females (stem crossing rate success, hesitation and escape behavior, mobility periods) was tested in lab conditions on the eight Solanum genotypes, at four period of time after the predator introduction (10, 25, 55 and 100 min), with a video observation of 5 min at each period. The females were then mounted on slides and body length and width (at the fore hind, middle and back parts) measured. No effect of the tomato genotypes was observed on the dispersal ability of the predator. However, specimens that succeeded in crossing the stem, had a higher percentage of mobility time (79.36%) than those that failed (43.60%). Furthermore, body width at midbody (DSW2) and dorsal shield length (DSL) were negatively correlated with dispersal ability. The mean DSL and DSW2 of the females that succeed to cross were 342.3 and 160.9 µm, respectively vs. 345.6 and 164.9 µm, for females that did not succeed. This suggests that the more slender and relatively small the specimens, the more are mobile and able to successfully cross the stem. The number of glandular trichomes type (GT) VI and to a lesser extent GT I and IV, and non-glandular trichomes (NGT) II&III appear to limit dispersal. The GT VI seems to have a repellent effect. On the opposite, the number of NGT V were positively correlated with high mobility and stem crossing rates. Assuming that the main barrier to biological control efficiency is dispersal along tomato stems, these preliminary results should have implications for biological control success. The proportion of mites with 'optimal dimensions' appears to be low and further studies should be undertaken to better assess the proportion of mites with such ideal dimensions in different populations and also to determine whether these morphological traits are associated with different feeding abilities and/or abiotic conditions.

2.
PeerJ ; 12: e17568, 2024.
Article in English | MEDLINE | ID: mdl-38948232

ABSTRACT

Background: Colletotrichum species are among the most common pathogens in agriculture and forestry, and their control is urgently needed. Methods: In this study, a total of 68 strains of biocontrol bacteria were isolated and identified from Photinia × fraseri rhizosphere soil. Results: The isolates were identified as Brevibacillus brevis by 16S rRNA. The inhibitory effect of TR-4 on Colletotrichum was confirmed by an in vitro antagonistic experiment. The inhibitory effect of TR-4 was 98% at a concentration of 10 µl/ml bacterial solution, protection of the plant and inhibition of C. siamense was evident. Moreover, the secretion of cellulase and chitosan enzymes in the TR-4 fermentation liquid cultured for three days was 9.07 mol/L and 2.15 µl/mol, respectively. Scanning electron microscopy and transmission electron microscopy confirmed that TR-4 destroyed the cell wall of C. siamense, resulting in leakage of the cell contents, thus weakening the pathogenicity of the bacteria.


Subject(s)
Brevibacillus , Plant Diseases , Soil Microbiology , Brevibacillus/metabolism , Brevibacillus/genetics , Plant Diseases/microbiology , Colletotrichum/genetics , Colletotrichum/pathogenicity , RNA, Ribosomal, 16S/genetics , Plant Leaves/microbiology , Rhizosphere , Microscopy, Electron, Scanning
3.
Vavilovskii Zhurnal Genet Selektsii ; 28(3): 276-287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952706

ABSTRACT

Beneficial endophytic bacteria can suppress the development of insect pests through direct antagonism, with the help of metabolites, or indirectly by the induction of systemic resistance through the regulation of hormonal signaling pathways. Lipopeptides are bacterial metabolites that exhibit direct antagonistic activity against many organisms, including insects. Also, lipopeptides are able to trigger induced systemic resistance (ISR) in plants against harmful organisms, but the physiological mechanisms of their action are just beginning to be studied. In this work, we studied ten strains of bacteria isolated from the tissues of wheat and potatoes. Sequencing of the 16S rRNA gene showed that all isolates belong to the genus Bacillus and to two species, B. subtilis and B. velezensis. The genes for lipopeptide synthetase - surfactin synthetase (Bs_srf ), iturin synthetase (Bs_ituA, Bs_ituB) and fengycin synthetase (Bs_fenD) - were identified in all bacterial isolates using PCR. All strains had high aphicidal activity against the Greenbug aphid (Schizaphis graminum Rond.) due to the synthesis of lipopeptides, which was proven using lipopeptide-rich fractions (LRFs) isolated from the strains. Endophytic lipopeptide-synthesizing strains of Bacillus spp. indirectly affected the viability of aphids, the endurance of plants against aphids and triggered ISR in plants, which manifested itself in the regulation of oxidative metabolism and the accumulation of transcripts of the Pr1, Pr2, Pr3, Pr6 and Pr9 genes due to the synthesis of lipopeptides, which was proven using LRF isolated from three strains: B. subtilis 26D, B. subtilis 11VM, and B. thuringiensis B-6066. We have for the first time demonstrated the aphicidal effect of fengycin and the ability of the fengycin-synthesizing strains and isolates, B. subtilis Ttl2, Bacillus sp. Stl7 and B. thuringiensis B-6066, to regulate components of the pro-/antioxidant system of aphid-infested plants. In addition, this work is the first to demonstrate an elicitor role of fengycin in triggering a systemic resistance to S. graminum in wheat plants. We have discovered new promising strains and isolates of endophytes of the genus Bacillus, which may be included in the composition of new biocontrol agents against aphids. One of the criteria for searching for new bacteria active against phloem-feeding insects can be the presence of lipopeptide synthetase genes in the bacterial genome.

4.
J Econ Entomol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956824

ABSTRACT

Understanding the biology and ecology of parasitoids can have direct implications for their evaluation as biological control agents, as well as for the development and implementation of mass-rearing techniques. Nonetheless, our current knowledge of the possible influence of lateralized displays (i.e., the asymmetric expression of cognitive functions) on their reproductive behavior is scarce. Herein, we characterized the behavioral elements involved in courtship, and quantified the durations of 2 important aphid parasitoids, Aphidius ervi Haliday and Aphidius matricariae Haliday (Hymenoptera: Braconidae: Aphidiinae). We quantified the main indicators of copulation and examined the occurrence of lateralized traits at population level. Results indicated that A. matricariae exhibited longer durations of wing fanning, antennal tapping, pre-copula and copula phases compared to A. ervi. Postcopulatory behavior was observed only in A. matricariae. Unlike other parasitoid species, the duration of wing fanning, chasing, and antennal tapping did not affect the success of the mating of male A. ervi and A. matricariae. Both species exhibited a right-biased female kicking behavior at the population level during the pre-copula. Our study provides insights into the fundamental biology of aphidiine parasitoids and reports the presence of population-level lateralized mating displays, which can serve as useful benchmarks to evaluate the quality of mass-rearing systems.

5.
Pest Manag Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958097

ABSTRACT

BACKGROUND: Aphid infestation adversely affects the yield and quality of crops. Rapid reproduction and insecticidal resistance have made controlling aphids in the field challenging. Therefore, the present study investigated the insecticidal property of Penicillium oxalicum (QLhf-1) and its mechanism of action against aphids, Hyalopterus arundimis Fabricius. RESULTS: Bioassay revealed that the control efficacy of the spores against aphids (86.30% and 89.05% on the third day and fifth day after infection, respectively) were higher than other components, such as the mycelium. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that QLhf-1 invaded the aphid cuticle through spores and used the aphid tissues as a nutrient source for growth and reproduction, causing stiffness and atrophy and a final death. Three extracellular enzymes, lipase, protease, and chitinase had a synergistic effect with spores, and they acted together to complete the infection process by degrading the aphid body wall and accelerating the infection process. CONCLUSION: The newly discovered endophytic penicillin strain P. oxalicum 'QLhf-1' can effectively kill aphids. The results provided strong evidence for the biological control of aphids, and lay a foundation for the development and utilization of QLhf-1. © 2024 Society of Chemical Industry.

6.
Chemosphere ; 362: 142726, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950750

ABSTRACT

A field population of Chrysoperla carnea was exposed for 17 generations to chlorfenapyr insecticide that resulted in 217-fold resistance compared to a susceptible strain. The overlapping of LC50 values in reciprocal crosses and their dominance values indicated that chlorfenapyr resistance was autosomal and incompletely dominant. The chi-square analysis of back-cross mortality confirmed the polygenic nature of chlorfenapyr resistance. The results of effective dominance of chlorfenapyr resistance indicated that resistance at the highest concentration was completely recessive. The realized heritability of chlorfenapyr resistance in the first 9, last 9, and a total of 18 generations was 0.28, 0.42, and 0.31, respectively. Furthermore, synergism results showed that both experimental synergists, PBO and DEF, did not synergize the toxicity of chlorfenapyr. In conclusion, C. carnea had been found to have autosomal, partially dominant, and polygenic chlorfenapyr resistance. Meaning that thereby resistance is inherited through multiple genes and is not limited to a single gene or sex-linked trait. These findings will help to develop an effective IPM model focusing on the simultaneous use of selective insecticides and resistant biocontrol agents to reduce the problem of resistance development in pest populations.

7.
Front Plant Sci ; 15: 1410197, 2024.
Article in English | MEDLINE | ID: mdl-38978518

ABSTRACT

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.

8.
Plant Physiol Biochem ; 214: 108912, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972241

ABSTRACT

Bacillus tequilensis DZY 6715 was isolated from healthy leaves in Camellia oleifera, and the strain DZY 6715 significantly inhibited anthracnose disease resulting from Colletotrichum fructicola in C. oleifera, besides, its associated mechanism of disease resistance was explored. B. tequilensis DZY 6715 treatment controlled mycelial growth of C. fructicola in C. oleifera, and significantly decreased C. oleifera anthracnose incidence and disease index compared with the control group. B. tequilensis DZY 6715 has strong biofilm forming ability, and also secretes extracellular ß-1, 3-glucanase and chitinase, which could cause cell membranes damage and increased cellular compound leakage. C.oleifera treated with DZY 6715 also effectively enhanced enzyme activities and stimulated the synthesis the substances related to phenylpropane metabolism and reactive oxygen metabolism. Moreover, transcript profiling analysis revealed more differentially expressed genes related to phenylpropanoid pathway metabolism and antioxidant system inducing by DZY 6715 compared with the control in C. oleifera. Thus, it can be concluded that B. tequilensis DZY 6715 is a suitable bio-control agent to control anthracnose disease in C. oleifera.

9.
BMC Plant Biol ; 24(1): 647, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977968

ABSTRACT

BACKGROUND: The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS: The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION: The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.


Subject(s)
Ginsenosides , Paenibacillus polymyxa , Panax , Plant Diseases , Rhizosphere , Panax/microbiology , Panax/growth & development , Panax/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Soil Microbiology , Endophytes/physiology , Endophytes/drug effects , Microbiota/drug effects
10.
J Invertebr Pathol ; 206: 108163, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955262

ABSTRACT

Entomopathogenic nematodes (EPNs) are ubiquitous soil-thriving organisms that use chemical cues to seek and infect soil-dwelling arthropods, yielding various levels of biological control. Going beyond soil application, scientists and practitioners started exploring the option of applying EPNs onto the foliage of crops in attempts to manage leaf-dwelling insect pests as well. Despite some success, particularly with protective formulations, it remains uncertain whether EPNs could indeed survive the phyllospheric environment, and successfully control foliar insect pests. In this context, we tested the potential of commercially produced Steinernema feltiae and S. carpocapsae, two of the most commonly used EPNs in the field of biological control, in controlling Lepidopteran foliar pests of economic importance, i.e. Tuta absoluta and Spodoptera spp. caterpillars as models. We first tested the survival and efficacy of both EPN species against the Lepidopteran caterpillars when applied onto tomato, sweet pepper and lettuce leaves, under controlled conditions and in commercial greenhouse conditions, respectively. Subsequently, we explored the behavioural responses of the EPNs to environmental cues typically encountered in the phyllosphere, and analysed plant volatile organic compounds (VOCs). Our results show that both S. feltiae and S. carpocapsae successfully survived and infected the foliar caterpillars, reaching similar level of control to a standard chemical pesticide in commercial practices. Remarkably, both EPN species survived and remained effective up to four days in the phyllosphere, and needed only a few hours to successfully penetrate the caterpillars. Interestingly, S. feltiae was attracted to VOCs from tomato plants, and tended to prefer those from caterpillar-induced plants, suggesting that the nematodes may actively forage toward its host, although it has never been exposed to leaf-borne volatiles during its evolution. The present study shows the high potential of steinernematids in managing major foliar pests in greenhouses and in becoming a key player in foliar biological control. In particular, the discovery that EPNs use foliar VOCs to locate caterpillar hosts opens up new opportunities in terms of application techniques and affordable effective doses.

11.
Zoological Lett ; 10(1): 13, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020388

ABSTRACT

Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.

12.
Int J Biol Macromol ; 276(Pt 1): 133800, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996895

ABSTRACT

The use of beneficial microorganisms and polysaccharides for the biocontrol of plant diseases currently represents a promising tool for the management of soil-borne pathogens. Despite advancements, enhancing the efficacy and sustainability of these biocontrol methods, particularly in complex soil environments, remains a challenge. Thus, we investigated the potential of four PGPR strains encapsulated in natural alginate extracted from a brown seaweed Bifurcaria bifurcata to evaluate its biocontrol capacities against Verticillium wilt of tomato, ensuring optimal performance through a synergistic effect and innovative bacterial release. Our research demonstrated that the application of PGPR and alginate reduced disease severity and mortality rate and increased the natural defenses of tomato. Results showed that supplying alginate or the PGPR consortium at the root level s stimulates phenylalanine ammonia-lyase activity (the key enzyme of the phenylpropanoid metabolism) and the accumulation of phenolic compounds and lignin in leaves and roots. Treatment with PGPR encapsulated in alginate beads showed the best biocontrol efficiency and was accompanied by a synergistic effect reflecting a rapid, intense, and systemic induction of defense mechanisms known for their effectiveness in inducing resistance in tomato. These promising results suggest that such bioformulations could lead to innovative agricultural practices for sustainable plant protection against pathogens.

13.
J Econ Entomol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047177

ABSTRACT

Social paper wasps regularly prey upon lepidopteran larvae, some of which are economically impactful agricultural pest species. We examined the potential of native North American Polistes metricus Say (Hymenoptera: Vespidae) and Polistes fuscatus (Fabricius) for biocontrol of Brassica L. pests in an experimental setting. First, we translocated P. metricus to one-half of a divided screened hoop house and placed a mix of 4th-5th instar lepidopteran larvae (Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), Pieris spp. Schrank (Lepidoptera: Pieridae), and Plutella xylostella (L.) (Lepidoptera: Plutellidae)) on half of the broccoli plants on both sides of the hoop house. We recorded and replaced missing caterpillars daily, and assessed leaf damage after 1 wk. P. metricus was 100% effective at removing all caterpillars from the wasp side of the hoop house, and plant damage by caterpillars was significantly reduced in the presence of wasps. We then replicated the study using a different combination of Polistes (fuscatus) and Brassica crop (kale) with a 2 × 2 experimental design in which plants had either T. ni larvae added or absent (factor 1), and were either covered with insect mesh or left exposed (factor 2). By the second day of exposure to these pest species, wasps removed over 80% of the larvae within 3 h of placing them on the plants. We discuss implications of this study for the potential use of native Polistes wasps as an integrated pest management strategy.

14.
Insects ; 15(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39057200

ABSTRACT

Drosophila suzukii and Tuta absoluta are successful biological invaders of agroecosystems. Their integrated pest management (IPM) programs involve the release and/or conservation of natural enemies. Among these, Ganaspis kimorum is a major Asian parasitoid of D. suzukii and has been introduced as a classical biological control agent of this pest in Europe and North America, while Necremnus tutae is a key fortuitous parasitoid of T. absoluta in the Mediterranean region. Bioinsecticides represent key alternatives to chemicals for controlling both pests. This study investigated the potential compatibility of both parasitoids with Beauveria bassiana, Bacillus thuringiensis, garlic essential oil (EO), and spinosad, in comparison to two synthetic insecticides, cyantraniliprole and chlorantraniliprole. The results showed that combining each of the tested insecticides with G. kimorum slightly increased pest mortality compared to the insecticide alone. Necremnus tutae had a significant additive effect on host mortality when combined with insecticides. Beauveria bassiana and B. thuringiensis were most compatible with both parasitoid species. Both garlic EO and chlorantraniliprole impaired the survival of immature N. tutae and showed sublethal toxicity on the reproductive and non-reproductive behaviors of N. tutae. Spinosad exhibited high acute toxicity on both juvenile and adult parasitoids of both species. Overall, these findings provide useful insights into insecticide selectivity toward two key parasitoids and offer new knowledge on the potential of combining natural enemies and bioinsecticides for optimized IPM.

15.
Insects ; 15(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39057219

ABSTRACT

Life tables are an important tool to forecast the performance of biological control agents used in pest management programs, and they are often assessed in terms of population growth. In the present study, the suitability of the aphids Aphis fabae Scopoli and Myzus persicae (Sulzer) for the ladybird predator Scymnus nubilus Mulsant was assessed for the first time. For this, we evaluated and compared the life history traits of immature individuals and adults of the predator fed single-aphid diets and the consequences of the single-aphid diets for the demographic parameters. Scymnus nubilus that were fed A. fabae were significantly more fecund and presented a shorter immature development time than those fed M. persicae. The predators fed A. fabae had a significantly higher net reproductive rate, an intrinsic and finite rate of increase, while their doubling time was significantly lower than that of those fed M. persicae. The aphid species used in this study are new additions to the essential prey list of the ladybird, with the predator presenting a better biological performance than that found on the previously known essential prey species.

16.
Insects ; 15(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39057217

ABSTRACT

Feeding on mixed, alternating, or changing diets often favor insect development. With the aim to optimize mass rearing and use for the biological control of insect pests, we investigated the effects of various combinations of high-quality (the green peach aphid Myzus persicae) and low-quality (eggs of the grain moth Sitotroga cerealella) foods on the larval development of a predatory ladybird Cheilomenes propinqua. In the first experiment, eggs and aphids were mixed in different proportions; in the second experiment, larvae switched from feeding on aphids to feeding on eggs. Although the beneficial additive effect of mixed foods was detected in some treatments with limited diets, feeding on various combinations of eggs with aphids never resulted in higher survival, faster development, or a larger size of emerging adults than those observed for feeding on unlimited amounts of aphids. For the practice of biological control, we conclude that, if necessary (for example, in the case of temporary shortage or a lack of aphids in mass rearing facilities or in the case of preventing release of C. propinqua adults in greenhouses), C. propinqua larvae can be fed with grain moth eggs by replacing, mixing, or alternating with aphids, although this will inevitably result in a proportional decrease in pre-adult survival, rate of development, weight, and size of the emerging adults. On the other hand, even a minimal addition of aphids can have a substantial positive effect on larvae fed with grain moth eggs.

17.
Insects ; 15(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39057272

ABSTRACT

Since ancestral times, quinoa (Chenopodium quinoa Willd.) has been cultivated in the Andean regions. Recently, this pseudocereal has received increasing international attention due to its beneficial properties, such as adaptation and resilience in the context of global change, and the nutritional value of the grains. As a result, its production areas have not only increased in the highlands of South America but have also expanded outside of its Andean origins, and the crop is currently produced worldwide. The key pests of quinoa in the Andean region are the gelechiid moths Eurysacca melanocampta and Eurysacca quinoae; in other parts of the world, new pest problems have recently been identified limiting quinoa production, including the gelechiid Scrobipalpa atripicella in North America and Europe and the agromyzid fly Amauromyza karli in North America. In this review, the status of quinoa pests in the world is presented, and different aspects of their integrated management are discussed, including sampling methodologies for pest monitoring, economic threshold levels, and various control strategies.

18.
Insects ; 15(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057279

ABSTRACT

Aedes aegypti, the primary vector of dengue, undergoes preimaginal development in brackish water (BW). However, dengue vector control exclusively targets freshwater (FW) habitats. The present study evaluated the predatory efficacy of nymphal odonates that can develop in both FW and BW. Nymphs of three damselfly and three dragonfly species from FW and BW habitats were identified and acclimatized to FW (<0.5 gL-1 salt) and BW (10 gL-1 salt) mesocosm conditions. The experiment was repeated nine times with nine different individual predators per species under both salinity conditions. One hundred L3 Ae. aegypti from FW and BW laboratory colonies were introduced to determine the predatory rate (PR) and clearance rate (CR) after 24, 48, and 72 h, and one hundred L3 larvae were introduced every 24 h. The dragonfly nymph Hydrobasileus croceus and the damselfly nymph Paracercion hieroglyphicum showed the highest PR and CR under both rearing conditions at all times. However, damselfly and dragonfly nymphs significantly (p < 0.05) differed in their CR under both FW and BW conditions. Thus, all six odonate species have predatory potential and this suggests that they could be used as biological control agents to eliminate preimaginal stages of Ae. aegypti developing in both FW and BW habitats.

19.
J Fungi (Basel) ; 10(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39057356

ABSTRACT

Black rot (Guignardia bidwellii) and downy mildew (Plasmopara viticola) are two major grapevine diseases against which the development of efficient biocontrol solutions is required in a context of sustainable viticulture. This study aimed at evaluating and comparing the efficacy and modes of action of bacterial culture supernatants from Bacillus velezensis Buz14 and B. ginsengihumi S38. Both biocontrol agents (BCA) were previously demonstrated as highly effective against Botrytis cinerea in grapevines. In semi-controlled conditions, both supernatants provided significant protection against black rot and downy mildew. They exhibited antibiosis against the pathogens by significantly decreasing G. bidwellii mycelial growth, but also the release and motility of P. viticola zoospores. They also significantly induced grapevine defences, as stilbene production. The LB medium, used for the bacterial cultures, also showed partial effects against both pathogens and induced plant defences. This is discussed in terms of choice of experimental controls when studying the biological activity of BCA supernatants. Thus, we identified two bacterial culture supernatants as new potential biocontrol products exhibiting multi-spectrum antagonist activity against different grapevine key pathogens and having a dual mode of action.

20.
J Fungi (Basel) ; 10(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39057379

ABSTRACT

Dodder (Cuscuta spp.) is a dangerous parasitic plant that causes serious damage to crop production and is challenging to eliminate. Herbicide application is a common strategy to control dodder in the field, but it is costly, ineffective, and further results in hazardous outcomes. Therefore, our study aims to identify the potential pathogens in naturally occurring dodder infections which may provide efficient biocontrol options. In this regard, the pathogens were isolated from the infected plants, their pathogenicity was validated through inoculation, and the optimal culture conditions for their growth were identified by determining the pathogenicity difference. The pathogenicity range was determined in vitro using the leaves of common horticultural plants and crops. Furthermore, a small range of horticultural plants parasitized by Cuscuta reflexa in the field were inoculated with the pathogen to determine their biosafety and biocontrol potential, and the pathogens were identified by morphological and molecular characterization. We found 7 strains that were isolated after pathogen enrichment culture. Among them, Cbp6 and Cbp7 showed the highest pathogenicity against C. reflexa. After testing the inoculation of more than 50 species of plants, only 9 species showed varying degrees of lesions on leaves, which proved the high biosafety for common plants. Field spraying of these pathogens showed a good control effect on C. reflexa after 21 days; the disease severityreached 66.0%, while its host plant did not display obvious symptoms. In conclusion, the pathogens Cbp6 and Cbp7 were identified as Alternaria alternata, and the results of this study provide a theoretical basis for the biological control of dodder.

SELECTION OF CITATIONS
SEARCH DETAIL