Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
2.
Sensors (Basel) ; 24(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001075

ABSTRACT

INTRODUCTION: The current approach to assessing bradykinesia in Parkinson's Disease relies on the Unified Parkinson's Disease Rating Scale (UPDRS), which is a numeric scale. Inertial sensors offer the ability to probe subcomponents of bradykinesia: motor speed, amplitude, and rhythm. Thus, we sought to investigate the differential effects of high-frequency compared to low-frequency subthalamic nucleus (STN) deep brain stimulation (DBS) on these quantified facets of bradykinesia. METHODS: We recruited advanced Parkinson's Disease subjects with a chronic bilateral subthalamic nucleus (STN) DBS implantation to a single-blind stimulation trial where each combination of medication state (OFF/ON), electrode contacts, and stimulation frequency (60 Hz/180 Hz) was assessed. The Kinesia One sensor system was used to measure upper limb bradykinesia. For each stimulation trial, subjects performed extremity motor tasks. Sensor data were recorded continuously. We identified STN DBS parameters that were associated with improved upper extremity bradykinesia symptoms using a mixed linear regression model. RESULTS: We recruited 22 subjects (6 females) for this study. The 180 Hz STN DBS (compared to the 60 Hz STN DBS) and dopaminergic medications improved all subcomponents of upper extremity bradykinesia (motor speed, amplitude, and rhythm). For the motor rhythm subcomponent of bradykinesia, ventral contacts yielded improved symptom improvement compared to dorsal contacts. CONCLUSION: The differential impact of high- and low-frequency STN DBS on the symptoms of bradykinesia may advise programming for these patients but warrants further investigation. Wearable sensors represent a valuable addition to the armamentarium that furthers our ability to conduct objective, quantitative clinical assessments.


Subject(s)
Deep Brain Stimulation , Hypokinesia , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Deep Brain Stimulation/instrumentation , Hypokinesia/therapy , Hypokinesia/physiopathology , Subthalamic Nucleus/physiopathology , Female , Male , Middle Aged , Aged
3.
J Neurosurg ; : 1-11, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968618

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) targeting the globus pallidus interna (GPi) has been shown to significantly improve motor symptoms for the treatment of medication-refractory Parkinson's disease. Yet, heterogeneity in clinical outcomes persists, possibly due to suboptimal target identification within the GPi. By leveraging robust sampling of the GPi and 6-month postsurgical outcomes, this study aims to determine optimal symptom-specific GPi DBS targets. METHODS: In this study, the authors analyzed the anatomical lead location and 6-month postsurgical, double-blinded outcome measures of 86 patients who underwent bilateral GPi DBS. These patients were selected from the multicenter Veterans Affairs (VA)/National Institutes of Neurological Disorders and Stroke (NINDS) Cooperative Studies Program (CSP) 468 study to identify the optimal target zones ("sweet spots") for the control of overall motor (United Parkinson's Disease Rating Scale [UPDRS]-III), axial, tremor, rigidity, and bradykinesia symptoms. Lead coordinates were normalized to Montreal Neurological Institute space and the optimal target zones were identified and validated using a leave-one-patient-out approach. RESULTS: The authors' findings revealed statistically significant optimal target zones for UPDRS-III (R = 0.37, p < 0.001), axial (R = 0.22, p = 0.042), rigidity (R = 0.20, p = 0.021), and bradykinesia (R = 0.23, p = 0.004) symptoms. These zones were localized within the primary motor and premotor subdivisions of the GPi. Interestingly, these zones extended beyond the GPi lateral border into the GPi-globus pallidus externa (GPe) lamina and into the GPe, but they did not reach the GPi ventral border, challenging traditional surgical approaches based on pallidotomies. CONCLUSIONS: Drawing upon a robust dataset, this research effectively delineates specific optimal target zones for not only overall motor improvement but also symptom subscores. These insights hold the potential to enhance the precision of targeting in subsequent bilateral GPi DBS surgical procedures.

4.
Parkinsonism Relat Disord ; 126: 107057, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067319

ABSTRACT

INTRODUCTION: CTNNB1 gene loss-of-function variants cause Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV, OMIM 615075). Although motor impairment represents a core feature of this condition, the motor phenotype remains poorly described. We systematically assessed a cohort of 14 patients with disease-causing CTNNB1 variants to better characterize the movement disorder phenotype. METHODS: patients were enrolled at Bambino Gesù Children's Hospital in Rome, Italy, between January 2019 and February 2024. 14 participants were included and underwent extensive genetic and neurologic examination. Clinical features, neuroimaging and neurophysiological investigations were retrospectively analyzed from medical charts and video recordings. RESULTS: 13 out of 14 patients showed motor disorders (one only showing mild coordination difficulties). 12 presented abnormal gait (11 patients with broad-based gait, one with narrow-based in-toeing gait, one with broad-based gait with unilateral intoeing). One did not achieve walking ability. 13 patients presented progressive lower limbs hypertonia without overt pyramidal signs. Five patients reported exaggerated startle, three developed upper body (prominently cervical) dystonia in the second decade, with or without bradykinesia (2/13). Treatment efficacy was variable: botulinum toxin was (at least partially) effective in 5/6, levodopa in 1 of 4 treated patients. CONCLUSIONS: CTNNB1-syndrome is associated with a peculiar, but recognizable movement disorder phenotype, encompassing complex gait disorders with progressive lower limb hypertonia, exaggerated startle, and possible occurrence in the second decade of life of upper body dystonia with or without bradykinesia.


Subject(s)
Movement Disorders , Phenotype , beta Catenin , Humans , Male , Female , Child , Adolescent , Movement Disorders/genetics , Movement Disorders/physiopathology , beta Catenin/genetics , Retrospective Studies , Child, Preschool , Adult , Young Adult , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/genetics , Syndrome
5.
J Neurol Sci ; 463: 123089, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38991323

ABSTRACT

BACKGROUND: The core clinical sign of Parkinson's disease (PD) is bradykinesia, for which a standard test is finger tapping: the clinician observes a person repetitively tap finger and thumb together. That requires an expert eye, a scarce resource, and even experts show variability and inaccuracy. Existing applications of technology to finger tapping reduce the tapping signal to one-dimensional measures, with researcher-defined features derived from those measures. OBJECTIVES: (1) To apply a deep learning neural network directly to video of finger tapping, without human-defined measures/features, and determine classification accuracy for idiopathic PD versus controls. (2) To visualise the features learned by the model. METHODS: 152 smartphone videos of 10s finger tapping were collected from 40 people with PD and 37 controls. We down-sampled pixel dimensions and videos were split into 1 s clips. A 3D convolutional neural network was trained on these clips. RESULTS: For discriminating PD from controls, our model showed training accuracy 0.91, and test accuracy 0.69, with test precision 0.73, test recall 0.76 and test AUROC 0.76. We also report class activation maps for the five most predictive features. These show the spatial and temporal sections of video upon which the network focuses attention to make a prediction, including an apparent dropping thumb movement distinct for the PD group. CONCLUSIONS: A deep learning neural network can be applied directly to standard video of finger tapping, to distinguish PD from controls, without a requirement to extract a one-dimensional signal from the video, or pre-define tapping features.


Subject(s)
Deep Learning , Parkinson Disease , Video Recording , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Male , Female , Aged , Middle Aged , Video Recording/methods , Fingers/physiopathology , Movement/physiology , Neural Networks, Computer , Hypokinesia/physiopathology , Hypokinesia/diagnosis , Smartphone
6.
J Neurol Sci ; 463: 123144, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39033737

ABSTRACT

INTRODUCTION: Smartphone applications (apps) are instruments that assist with objective measurements during the clinical assessment of patients with movement disorders. We aim to test the hypothesis that Parkinson's disease (PD) patients will exhibit an increase in tapping variability and a decrease in tapping speed over a one-year period, compared to healthy controls (HC). METHODS: Data was prospectively collected from participants enrolled in our Cincinnati Cohort Biomarker Program, in 2021-2023. Participants diagnosed with PD and age-matched HC were examined over a one-year-interval with a tapping test performed with customized smartphone app. Tapping speed (taps/s), inter-tap intervals and variability (movement regularity), and sequence effect were measured. RESULTS: We included 295 PD patients and 62 HC. At baseline, PD subjects showed higher inter-tap variability than HC (coefficient-of-variation-CV, 37 ms [22-64] vs 26 ms [8-51]) (p = 0.007). Conversely, there was no difference in inter-tap intervals (411 ms [199-593] in PD versus 478 ms [243-618] in HC) and tapping speed (3.42[2.70-4.76] taps/s in PD versus 3.21 taps/s [2.57-4.54] in HC) (p > 0.05). Only PD subjects (n = 135), at the one-year follow-up, showed a decreased tapping speed vs baseline (3.44 taps/s [2.86-4.81] versus 3.39 taps/s [2.58,4.30]) (p = 0.036), without significant changes in inter-tap variability (CV, 32 ms [18,55] baseline versus 34 ms [22,59] follow-up) (p = 0.142). No changes were found in HC at the one-year follow up (all p values>0.05). CONCLUSIONS: Inter-tap variability (dysrhythmia) but no inter-tap intervals or tapping speed are reliably distinctive feature of an app-based bradykinesia assessment in PD.


Subject(s)
Mobile Applications , Parkinson Disease , Smartphone , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Parkinson Disease/complications , Male , Female , Aged , Middle Aged , Prospective Studies
7.
Brain Sci ; 14(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928620

ABSTRACT

Parkinson's disease (PD) is a progressive neurological disorder that is typically characterized by a range of motor dysfunctions, and its impact extends beyond physical abnormalities into emotional well-being and cognitive symptoms. The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) leads to an array of dysfunctions in the functioning of the basal ganglia (BG) circuitry that manifests into PD. While active research is being carried out to find the root cause of SNc cell death, various therapeutic techniques are used to manage the symptoms of PD. The most common approach in managing the symptoms is replenishing the lost dopamine in the form of taking dopaminergic medications such as levodopa, despite its long-term complications. Another commonly used intervention for PD is deep brain stimulation (DBS). DBS is most commonly used when levodopa medication efficacy is reduced, and, in combination with levodopa medication, it helps reduce the required dosage of medication, prolonging the therapeutic effect. DBS is also a first choice option when motor complications such as dyskinesia emerge as a side effect of medication. Several studies have also reported that though DBS is found to be effective in suppressing severe motor symptoms such as tremors and rigidity, it has an adverse effect on cognitive capabilities. Henceforth, it is important to understand the exact mechanism of DBS in alleviating motor symptoms. A computational model of DBS stimulation for motor symptoms will offer great insights into understanding the mechanisms underlying DBS, and, along this line, in our current study, we modeled a cortico-basal ganglia circuitry of arm reaching, where we simulated healthy control (HC) and PD symptoms as well as the DBS effect on PD tremor and bradykinesia. Our modeling results reveal that PD tremors are more correlated with the theta band, while bradykinesia is more correlated with the beta band of the frequency spectrum of the local field potential (LFP) of the subthalamic nucleus (STN) neurons. With a DBS current of 220 pA, 130 Hz, and a 100 microsecond pulse-width, we could found the maximum therapeutic effect for the pathological dynamics simulated using our model using a set of parameter values. However, the exact DBS characteristics vary from patient to patient, and this can be further studied by exploring the model parameter space. This model can be extended to study different DBS targets and accommodate cognitive dynamics in the future to study the impact of DBS on cognitive symptoms and thereby optimize the parameters to produce optimal performance effects across modalities. Combining DBS with rehabilitation is another frontier where DBS can reduce symptoms such as tremors and rigidity, enabling patients to participate in their therapy. With DBS providing instant relief to patients, a combination of DBS and rehabilitation can enhance neural plasticity. One of the key motivations behind combining DBS with rehabilitation is to expect comparable results in motor performance even with milder DBS currents.

8.
Front Hum Neurosci ; 18: 1395827, 2024.
Article in English | MEDLINE | ID: mdl-38938290

ABSTRACT

Introduction: Bradykinesia is an essential diagnostic criterion for Parkinson's disease (PD) but is frequently observed in many non-parkinsonian movement disorders, complicating differential diagnosis, particularly in disorders featuring tremors. The presence of bradykinetic features in the subset of dystonic tremors (DT), either "pure" dystonic tremors or tremors associated with dystonia, remains currently unexplored. The aim of the current study was to evaluate upper limb bradykinesia in DT patients, comparing them with healthy controls (HC) and patients with PD by observing repetitive finger tapping (FT). Methods: The protocol consisted of two main parts. Initially, the kinematic recording of repetitive FT was performed using optical hand tracking system (Leap Motion Controller). The values of amplitude, amplitude decrement, frequency, frequency decrement, speed, acceleration and number of halts of FT were calculated. Subsequently, three independent movement disorder specialists from different movement disorders centres, blinded to the diagnosis, rated the presence of FT bradykinesia based on video recordings. Results: Thirty-six subjects participated in the study (12 DT, 12 HC and 12 early-stage PD). Kinematic analysis revealed no significant difference in the selected parameters of FT bradykinesia between DT patients and HC. In comparisons between DT and PD patients, PD patients exhibited bigger amplitude decrement and slower FT performance. In the blinded clinical assessment, bradykinesia was rated, on average, as being present in 41.6% of DT patients, 27.7% of HC, and 91.7% of PD patients. While overall inter-rater agreement was moderate, weak agreement was noted within the DT group. Discussion: Clinical ratings indicated signs of bradykinesia in almost half of DT patients. The objective kinematic analysis confirmed comparable parameters between DT and HC individuals, with more pronounced abnormalities in PD across various kinematic parameters. Interpretation of bradykinesia signs in tremor patients with DT should be approached cautiously and objective motion analysis might complement the diagnostic process and serve as a decision support system in the choice of clinical entities.

9.
Artif Intell Med ; 154: 102914, 2024 08.
Article in English | MEDLINE | ID: mdl-38909431

ABSTRACT

BACKGROUND: Parkinson's Disease (PD) demands early diagnosis and frequent assessment of symptoms. In particular, analysing hand movements is pivotal to understand disease progression. Advancements in hand tracking using Deep Learning (DL) allow for the automatic and objective disease evaluation from video recordings of standardised motor tasks, which are the foundation of neurological examinations. In view of this scenario, this narrative review aims to describe the state of the art and the future perspective of DL frameworks for hand tracking in video-based PD assessment. METHODS: A rigorous search of PubMed, Web of Science, IEEE Explorer, and Scopus until October 2023 using primary keywords such as parkinson, hand tracking, and deep learning was performed to select eligible by focusing on video-based PD assessment through DL-driven hand tracking frameworks RESULTS:: After accurate screening, 23 publications met the selection criteria. These studies used various solutions, from well-established pose estimation frameworks, like OpenPose and MediaPipe, to custom deep architectures designed to accurately track hand and finger movements and extract relevant disease features. Estimated hand tracking data were then used to differentiate PD patients from healthy individuals, characterise symptoms such as tremors and bradykinesia, or regress the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) by automatically assessing clinical tasks such as finger tapping, hand movements, and pronation-supination. CONCLUSIONS: DL-driven hand tracking holds promise for PD assessment, offering precise, objective measurements for early diagnosis and monitoring, especially in a telemedicine scenario. However, to ensure clinical acceptance, standardisation and validation are crucial. Future research should prioritise large open datasets, rigorous validation on patients, and the investigation of new frontiers such as tracking hand-hand and hand-object interactions for daily-life tasks assessment.


Subject(s)
Deep Learning , Hand , Parkinson Disease , Video Recording , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Humans , Hand/physiopathology , Movement
10.
J Parkinsons Dis ; 14(5): 993-997, 2024.
Article in English | MEDLINE | ID: mdl-38943397

ABSTRACT

Reduced spontaneous blinking is a recognized Parkinson's disease (PD) feature. In contrast, voluntary blinking has been less studied and might serve as a measurable marker of facial bradykinesia. We tested 31 PD patients and 31 controls. Participants were filmed during conversation and a rapid blinking task. Both tasks were videorecorded to count the number of blinks per second. PD patients had lower blink rates. Rapid blinking accurately discriminated between groups with 77% sensitivity and 71% specificity. To conclude, rapid blinking may be a simple and quantifiable task of facial bradykinesia.


Decreased blinking without conscious effort is a well-known characteristic of Parkinson's disease (PD). However, voluntary blinking, which is blinking on purpose, has not been studied as much and could be a sign of slower facial movements. We studied a group of people with PD and another one without the disease. We recorded videos of them talking and doing a task where they blinked quickly. Then, we counted how many times they blinked per second in each video. We found that people with PD blinked less often. The rapid blinking task accurately distinguished between those with PD and those without it, being correct about 77% of the time for spotting PD and 71% for spotting non-PD. In conclusion, the rapid blinking task could be a simple and measurable way to identify slower facial movements in PD.


Subject(s)
Blinking , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Parkinson Disease/complications , Blinking/physiology , Male , Female , Aged , Middle Aged , Hypokinesia/etiology , Hypokinesia/physiopathology , Hypokinesia/diagnosis
11.
Neurología (Barc., Ed. impr.) ; 39(4): 345-352, May. 2024. tab, ilus, graf
Article in English | IBECS | ID: ibc-232517

ABSTRACT

Introduction: Reliable assessment of individuals with Parkinson's disease (PD) is essential for providing adequate treatment. Clinical assessment is a complex and time-consuming task, especially for bradykinesia, since its evaluation can be influenced by the degree of experience of the examiner, patient collaboration and individual bias. Improvement of the clinical evaluation can be obtained by considering assessments from several professionals. However, this is only true when inter and intra-rater agreement are high. Recently, the Movement Disorder Society highlighted, during the COVID-19 pandemic, the need to develop and validate technologies for remote assessment of the motor status of people with PD. Thus, this study introduces an objective strategy for the remote evaluation of bradykinesia using multi-specialist analysis. Methods: Twelve volunteers with PD participated and these were asked to execute finger tapping, hand opening/closing and pronation/supination movements. Each task was recorded and rated by fourteen PD health experts for each patient. The scores were assessed on an individual basis. Intra and inter-rater agreement and correlation were estimated. Results: The results showed that agreements and correlations between experienced examiners were high with low variability. In addition, group analysis was noted as possessing the potential to solve individual inconsistency bias. Conclusion: Furthermore, this study demonstrated the need for a group with prior training and experience, along with indicating the importance for the development of a clinical protocol that can use telemedicine for the evaluation of individuals with PD, as well as the inclusion of a specialized mediating group. In Addition, this research helps to the development of a valid remote assessment of bradykinesia.(AU)


Introducción: La evaluación confiable de las personas con la enfermedad de Parkinson (EP) es esencial para lograr con un tratamiento adecuado. La evaluación clínica es una tarea compleja y que requiere mucho tiempo, especialmente para la bradicinesia, ya que su evaluación puede verse influenciada por el grado de experiencia del examinador, la colaboración del paciente y el sesgo individual. La mejora de la evaluación clínica se puede obtener considerando las evaluaciones de varios profesionales. Sin embargo, esto solo es más preciso cuando el convenio intra e inter evaluadores es alto. Recientemente, la Sociedad de Trastornos del Movimiento destacó, durante la pandemia COVID-19, la necesidad de desarrollar y validar tecnologías para la evaluación remota del estado motor de las personas con EP. Por lo tanto, este estudio presenta una estrategia objetiva para la evaluación remota de la bradicinesia mediante un análisis multi evaluadores. Métodos: Participaron 12 voluntarios con EP y se les pidió que ejecutaran movimientos de golpeteo de dedos de las manos, movimientos con las manos y pronación-supinación de las manos. Cada ejecución del movimiento fue registrado y calificado por 14 expertos en salud. Las puntuaciones se evaluaron de forma individual. Se estimó el convenio y la correlación intra e inter evaluadores. Resultados: Los resultados mostraron que los convenios y las correlaciones inter evaluadores experimentados son altos con baja variabilidad. Además, se observó que el análisis de grupo posee el potencial de resolver el sesgo de inconsistencia individual. Conclusiones: De esta forma, este estudio demostró la necesidad de un grupo con formación y experiencia previa, señalando la importancia para el desarrollo de un protocolo clínico que utiliza la telemedicina para la evaluación de personas con EP y como la inclusión de un grupo mediador especializado. En realidad, esta investigación propone una evaluación remota eficaz de la bradicinesia.(AU)


Subject(s)
Humans , Male , Female , Neurology , Parkinson Disease , Hypokinesia , Telemedicine , Mental Status and Dementia Tests
12.
Med Eng Phys ; 128: 104171, 2024 06.
Article in English | MEDLINE | ID: mdl-38789216

ABSTRACT

Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.


Subject(s)
Lower Extremity , Neural Networks, Computer , Parkinson Disease , Upper Extremity , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Lower Extremity/physiopathology , Male , Female , Upper Extremity/physiopathology , Middle Aged , Aged
13.
J Neural Transm (Vienna) ; 131(8): 941-952, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744708

ABSTRACT

BACKGROUND: Subtle parkinsonian signs, i.e., rest tremor and bradykinesia, are considered soft signs for defining essential tremor (ET) plus. OBJECTIVES: Our study aimed to further characterize subtle parkinsonian signs in a relatively large sample of ET patients from a clinical and neurophysiological perspective. METHODS: We employed clinical scales and kinematic techniques to assess a sample of 82 ET patients. Eighty healthy controls matched for gender and age were also included. The primary focus of our study was to conduct a comparative analysis of ET patients (without any soft signs) and ET-plus patients with rest tremor and/or bradykinesia. Additionally, we investigated the asymmetry and side concordance of these soft signs. RESULTS: In ET-plus patients with parkinsonian soft signs (56.10% of the sample), rest tremor was clinically observed in 41.30% of cases, bradykinesia in 30.43%, and rest tremor plus bradykinesia in 28.26%. Patients with rest tremor had more severe and widespread action tremor than other patients. Furthermore, we observed a positive correlation between the amplitude of action and rest tremor. Most ET-plus patients had an asymmetry of rest tremor and bradykinesia. There was no side concordance between these soft signs, as confirmed through both clinical examination and kinematic evaluation. CONCLUSIONS: Rest tremor and bradykinesia are frequently observed in ET and are often asymmetric but not concordant. Our findings provide a better insight into the phenomenology of ET and suggest that the parkinsonian soft signs (rest tremor and bradykinesia) in ET-plus may originate from distinct pathophysiological mechanisms.


Subject(s)
Essential Tremor , Hypokinesia , Humans , Essential Tremor/physiopathology , Essential Tremor/diagnosis , Female , Male , Biomechanical Phenomena , Aged , Middle Aged , Hypokinesia/physiopathology , Hypokinesia/etiology , Hypokinesia/diagnosis , Severity of Illness Index , Aged, 80 and over , Adult
14.
Cerebellum ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748348

ABSTRACT

Essential tremor (ET) is a heterogeneous disorder characterized by bilateral upper limbs action tremor and, possibly, neurological signs of uncertain significance, including voluntary movement abnormalities and cognitive disturbances, i.e., the so-called 'soft' signs configuring the ET-plus definition. While motor and cognitive disturbances often coexist in ET, their interrelationship remains largely unexplored. Here we aim to further investigate the relationship between motor symptoms, objectively assessed through kinematic analysis, and cognitive dysfunctions in ET. Seventy ET patients underwent clinical examination, as well as kinematic recordings of tremor and finger tapping and a thorough cognitive assessment. We then tested clinic-demographic and kinematic differences between patients with and without cognitive abnormalities, i.e., with mild cognitive impairment (MCI). Correlation analysis served to explore potential associations between kinematic and cognitive data. Forty-three ET patients (61.42%) had MCI. ET-MCI patients exhibited reduced movement velocity during finger tapping compared to those with normal cognition (p < 0.001). Lower movement velocity during finger tapping was associated with poorer cognitive performance. Namely, we observed a correlation between movement velocity and performance on the Babcock Story Immediate and Delayed Recall Test (r = 0.52 and r = 0.45, both p < 0.001), as well as the interference memory task at 10 and 30 s (r = 0.3, p = 0.008 and r = 0.2, p = 0.03). In this study, we have provided data for a better pathophysiological interpretation of motor and cognitive signs in ET, including the role played by the cerebellum or extra-cerebellar areas, which possibly underpin both signs.

15.
Neurologia (Engl Ed) ; 39(4): 345-352, 2024 May.
Article in English | MEDLINE | ID: mdl-38616062

ABSTRACT

INTRODUCTION: Reliable assessment of individuals with Parkinson's disease (PD) is essential for providing adequate treatment. Clinical assessment is a complex and time-consuming task, especially for bradykinesia, since its evaluation can be influenced by the degree of experience of the examiner, patient collaboration and individual bias. Improvement of the clinical evaluation can be obtained by considering assessments from several professionals. However, this is only true when inter and intra-rater agreement are high. Recently, the Movement Disorder Society highlighted, during the COVID-19 pandemic, the need to develop and validate technologies for remote assessment of the motor status of people with PD. Thus, this study introduces an objective strategy for the remote evaluation of bradykinesia using multi-specialist analysis. METHODS: Twelve volunteers with PD participated and these were asked to execute finger tapping, hand opening/closing and pronation/supination movements. Each task was recorded and rated by fourteen PD health experts for each patient. The scores were assessed on an individual basis. Intra and inter-rater agreement and correlation were estimated. RESULTS: The results showed that agreements and correlations between experienced examiners were high with low variability. In addition, group analysis was noted as possessing the potential to solve individual inconsistency bias. CONCLUSION: Furthermore, this study demonstrated the need for a group with prior training and experience, along with indicating the importance for the development of a clinical protocol that can use telemedicine for the evaluation of individuals with PD, as well as the inclusion of a specialized mediating group. In Addition, this research helps to the development of a valid remote assessment of bradykinesia.


Subject(s)
COVID-19 , Parkinson Disease , Humans , Hypokinesia/diagnosis , Hypokinesia/etiology , Parkinson Disease/complications , Parkinson Disease/diagnosis , Pandemics , Movement
16.
Article in English | MEDLINE | ID: mdl-38451114

ABSTRACT

BACKGROUND: Parkinson's disease (PD) has an impact on speech production, manifesting in various ways including alterations in voice quality, challenges in articulating sounds and a decrease in speech rate. Numerous investigations have been conducted to ascertain the oral-diadochokinesis (O-DDK) rate in individuals with PD. However, the existing literature lacks exploration of such O-DDK rates in Malaysia and does not provide consistent evidence regarding the advantage of real-word repetition. AIMS: To explore the effect of gender, stimuli type and PD status and their interactions on the O-DDK rates among Malaysian-Malay speakers. METHODS & PROCEDURES: O-DDK performance of 62 participants (29 individuals with PD and 33 healthy elderly) using a non-word ('pataka'), a Malay real-word ('patahkan') and an English real-word ('buttercake') was audio recorded. The number of syllables produced in 8 s was counted. A hierarchical linear modelling was performed to investigate the effects of stimuli type (non-word, Malay real-word, English real-word), PD status (yes, no), gender (male, female) and their interactions on the O-DDK rate. The model accounted for participants' age as well as the nesting of repeated measurements within participants, thereby providing unbiased estimates of the effects. OUTCOMES & RESULTS: The stimuli effect was significant (p < 0.0001). Malay real-word showed the lowest O-DDK rate (5.03 ± 0.11 syllables/s), followed by English real-word (5.25 ± 0.11 syllables/s) and non-word (5.42 ± 0.11 syllables/s). Individuals with PD showed a significantly lower O-DDK rate compared to healthy elderly (4.73 ± 0.15 syllables/s vs. 5.74 ± 0.14 syllables/s, adjusted p < 0.001). A subsequent analysis indicated that the O-DDK rate declined in a quadratic pattern. However, neither gender nor age effects were observed. Additionally, no significant two-way interactions were found between stimuli type, PD status and gender (all p > 0.05). Therefore, the choice of stimuli type has no or only limited effect considering the use of O-DDK tests in clinical practice for diagnostic purposes. CONCLUSIONS & IMPLICATIONS: The observed slowness in O-DDK among individuals with PD can be attributed to the impact of the movement disorder, specifically bradykinesia, on the physiological aspects of speech production. Speech-language pathologists can gain insights into the impact of PD on speech production and tailor appropriate intervention strategies to address the specific needs of individuals with PD according to disease stages. WHAT THIS PAPER ADDS: What is already known on this subject The observed slowness in O-DDK rates among individuals with PD may stem from the movement disorder's effects on the physiological aspects of speech production, particularly bradykinesia. However, there is a lack of consistent evidence regarding the influence of real-word repetition and how O-DDK rates vary across different PD stages. What this study adds to existing knowledge The O-DDK rates decline in a quadratic pattern as the PD progresses. The research provides insights into the advantage of real-word repetition in assessing O-DDK rates, with Malay real-word showing the lowest O-DDK rate, followed by English real-word and non-word. What are the potential or actual clinical implications of this work? Speech-language pathologists can better understand the evolving nature of speech motor impairments as PD progresses. This insight enables them to design targeted intervention strategies that are sensitive to the specific needs and challenges associated with each PD stage. This finding can guide clinicians in selecting appropriate assessment tools for evaluating speech motor function in PD patients.

17.
Mov Disord ; 39(6): 1054-1059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470080

ABSTRACT

BACKGROUND: Isolated Rapid Eye Movement (REM) sleep Behavior Disorder (iRBD) requires quantitative tools to detect incipient Parkinson's disease (PD). METHODS: A motor battery was designed and compared with the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) in people with iRBD and controls. This included two keyboard-based tests (BRadykinesia Akinesia INcoordination tap test and Distal Finger Tapping) and two dual tasking tests (walking and finger tapping). RESULTS: We included 33 iRBD patients and 29 controls. The iRBD group performed both keyboard-based tapping tests more slowly (P < 0.001, P = 0.020) and less rhythmically (P < 0.001, P = 0.006) than controls. Unlike controls, the iRBD group increased their walking duration (P < 0.001) and had a smaller amplitude (P = 0.001) and slower (P = 0.007) finger tapping with dual task. The combination of the most salient motor markers showed 90.3% sensitivity for 89.3% specificity (area under the ROC curve [AUC], 0.94), which was higher than the MDS-UPDRS-III (minus action tremor) (69.7% sensitivity, 72.4% specificity; AUC, 0.81) for detecting motor dysfunction. CONCLUSION: Speed, rhythm, and dual task motor deterioration might be accurate indicators of incipient PD in iRBD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/physiopathology , REM Sleep Behavior Disorder/diagnosis , Male , Female , Aged , Middle Aged , Parkinson Disease/physiopathology , Parkinson Disease/complications , Psychomotor Performance/physiology , Walking/physiology , Severity of Illness Index
18.
Hum Mov Sci ; 95: 103201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507858

ABSTRACT

Bradykinesia, or slow movement, is a defining symptom of Parkinson's disease (PD), but the underlying neuromechanical deficits that lead to this slowness remain unclear. People with PD often have impaired rates of motor output accompanied by disruptions in neuromuscular excitation, causing abnormal, segmented, force-time curves. Previous investigations using single-joint models indicate that agonist electromyogram (EMG) silent periods cause motor segmentation. It is unknown whether motor segmentation is evident in more anatomically complex and ecologically important tasks, such as handgrip tasks. Aim 1 was to determine how handgrip rates of force change compare between people with PD and healthy young and older adults. Aim 2 was to determine whether motor segmentation is present in handgrip force and EMG measures in people with PD. Subjects performed rapid isometric handgrip pulses to 20-60% of their maximal voluntary contraction force while EMG was collected from the grip flexors and extensors. Dependent variables included the time to 90% peak force, the peak rate of force development, the duration above 90% of peak force, the number of segments in the force-time curve, the number of EMG bursts, time to relaxation from 90% of peak force, and the peak rate of force relaxation. People with PD had longer durations and lower rates of force change than young and older adults. Six of 22 people with PD had motor segmentation. People with PD had more EMG bursts compared to healthy adults and the number of EMG bursts covaried with the number of segments. Thus, control of rapid movement in Parkinson's disease can be studied using isometric handgrip. People with PD have impaired rate control compared to healthy adults and motor segmentation can be studied in handgrip.


Subject(s)
Electromyography , Hand Strength , Isometric Contraction , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Hand Strength/physiology , Aged , Male , Female , Middle Aged , Isometric Contraction/physiology , Adult , Young Adult , Muscle, Skeletal/physiopathology , Hypokinesia/physiopathology
19.
Cureus ; 16(2): e54736, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523931

ABSTRACT

Introduction Parkinson's disease (PD) is a progressive complex degenerative disorder characterised by several motor and non-motor symptoms that result in disability and deterioration of the patient's quality of life (QOL). Depression is the most common non-motor symptom that may severely alter the QOL. The objective of this study was to examine the correlation between depression and QOL among patients with PD who received treatment from a movement disorder clinic of a tertiary care teaching hospital in South India. Methods This was an analytical cross-sectional study conducted among 220 PD patients who received treatment from a movement disorder clinic of a tertiary care teaching hospital in South India. The participants aged between 40 and 80 years, who can comprehend Malayalam or English and were clinically diagnosed with PD according to United Kingdom PD Society Brain Bank criteria were included in the study. Depression was assessed using the Hospital Anxiety and Depression Scale, motor function using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, and the quality of life was assessed using the Parkinson's Disease Questionnaire 39. Results The results of this study showed that there was a significant positive correlation between depression and QOL (r=0.699, p<0.01) among patients with PD who received treatment from a tertiary care teaching hospital. The correlation with domains of QOL also identified that depression was significantly correlated with all domains of QOL and more to the emotional domain of QOL (r=0.799, p<0.01). Conclusion Depression is the most common neuropsychiatric condition in PD and the most important determinant of QOL. Depression may occur at any stage of PD and can significantly impact the QOL of patients and their caregivers. Hence it should be recognized early and managed by pharmacological and nonpharmacological measures to improve the QOL.

20.
Sci Rep ; 14(1): 5340, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438484

ABSTRACT

Bradykinesia is a behavioral manifestation that contributes to functional dependencies in later life. However, the current state of bradykinesia indexing primarily relies on subjective, time-averaged categorizations of motor deficits, which often yield poor reliability. Herein, we used time-resolved analyses of accelerometer recordings during standardized movements, data-driven factor analyses, and linear mixed effects models (LMEs) to quantitatively characterize general, task- and therapy-specific indices of motor impairment in people with Parkinson's disease (PwP) currently undergoing treatment for bradykinesia. Our results demonstrate that single-trial, accelerometer-based features of finger-tapping and rotational hand movements were significantly modulated by divergent therapeutic regimens. Further, these features corresponded well to current gold standards for symptom monitoring, with more precise predictive capacities of bradykinesia-specific declines achieved when considering kinematic features from diverse movement types together, rather than in isolation. Herein, we report data-driven, sample-specific kinematic profiles of diverse movement types along a continuous spectrum of motor impairment, which importantly, preserves the temporal scale for which biomechanical fluctuations in motor deficits evolve in humans. Therefore, this approach may prove useful for tracking bradykinesia-induced motor decline in aging populations the future.


Subject(s)
Hand , Hypokinesia , Humans , Hypokinesia/diagnosis , Hypokinesia/etiology , Reproducibility of Results , Upper Extremity , Movement
SELECTION OF CITATIONS
SEARCH DETAIL