Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275664

ABSTRACT

Building Management Systems (BMSs) are transitioning from utilising wired installations to wireless Internet of Things (IoT) sensors and actuators. This shift introduces the requirement of robust localisation methods which can link the installed sensors to the correct Control Units (CTUs) which will facilitate continued communication. In order to lessen the installation burden on the technicians, the installation process should be made more complicated by the localisation method. We propose an automated version of the fingerprinting-based localisation method which estimates the location of sensors with room-level accuracy. This approach can be used for initialisation and maintenance of BMSs without introducing additional manual labour from the technician installing the sensors. The method is extended to two proposed localisation methods which take advantage of knowledge present in the building plan regarding the distribution of sensors in each room to estimate the location of groups of sensors at the same time. Through tests using a simulation environment based on a Bluetooth-based measurement campaign, the proposed methods showed an improved accuracy from the baseline automated fingerprinting method. The results showed an error rate of 1 in 20 sensors (if the number of sensors per room is known) or as few as 1 per 200 sensors (if a group of sensors are deployed and detected together for one room at a time).

2.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001184

ABSTRACT

Buildings are complex structures composed of heterogeneous elements; these require building management systems (BMSs) to dynamically adapt them to occupants' needs and leverage building resources. The fast growth of information and communication technologies (ICTs) has transformed the BMS field into a multidisciplinary one. Consequently, this has caused several research papers on data-driven solutions to require examination and classification. This paper provides a broad overview of BMS by conducting a systematic literature review (SLR) summarizing current trends in this field. Unlike similar reviews, this SLR provides a rigorous methodology to review current research from a computer science perspective. Therefore, our goal is four-fold: (i) Identify the main topics in the field of building; (ii) Identify the recent data-driven methods; (iii) Understand the BMS's underlying computing architecture (iv) Understand the features of BMS that contribute to the smartization of buildings. The result synthesizes our findings and provides research directions for further research.

3.
Sensors (Basel) ; 23(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904663

ABSTRACT

A healthy and safe indoor environment is an important part of containing the coronavirus disease 2019 (COVID-19) pandemic. Therefore, this work presents a real-time Internet of things (IoT) software architecture to automatically calculate and visualize a COVID-19 aerosol transmission risk estimation. This risk estimation is based on indoor climate sensor data, such as carbon dioxide (CO2) and temperature, which is fed into Streaming MASSIF, a semantic stream processing platform, to perform the computations. The results are visualized on a dynamic dashboard that automatically suggests appropriate visualizations based on the semantics of the data. To evaluate the complete architecture, the indoor climate during the student examination periods of January 2020 (pre-COVID) and January 2021 (mid-COVID) was analyzed. When compared to each other, we observe that the COVID-19 measures in 2021 resulted in a safer indoor environment.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Air Pollution, Indoor/analysis , Respiratory Aerosols and Droplets , Software , Temperature
4.
Indoor Air ; 32(5): e13040, 2022 05.
Article in English | MEDLINE | ID: mdl-35622718

ABSTRACT

Post-epidemic protocols have been implemented in public buildings to keep indoor environments safe. However, indoor environmental conditions are affected by this decision, which also affect the occupants of buildings. This fact has major implications in educational buildings, where the satisfaction and learning performance of students may also be affected. This study investigates the impact of post-epidemic protocols on indoor environmental conditions in higher education buildings of one Portuguese and one Spanish university. A sensor monitoring campaign combined with a simultaneous questionnaire was conducted during the reopening of the educational buildings. Results showed that although renewal air protocols were effective and the mean CO2 concentration levels remained low (742 ppm and 519 ppm in Portugal and Spain universities, respectively), students were dissatisfied with the current indoor environmental conditions. Significant differences were also found between the responses of Portuguese and Spanish students. Indeed, Spanish students showed warmer preferences (thermal neutrality = 23.3℃) than Portuguese students (thermal neutrality = 20.7℃). In terms of involved indoor factors, the obtained data showed significant correlations (p < 0.001) between acoustic factors and overall satisfaction in the Portuguese students (ρ = 0.540) and between thermal factors and overall satisfaction in the Spanish students (ρ = 0.522). Therefore, indoor environmental conditions should be improved by keeping spaces safe while minimizing the impact of post-epidemic protocols on student learning performance.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Humans , Portugal , Respiration , Spain , Temperature
5.
Sensors (Basel) ; 21(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34960257

ABSTRACT

The malfunctioning of the heating, ventilating, and air conditioning (HVAC) system is considered to be one of the main challenges in modern buildings. Due to the complexity of the building management system (BMS) with operational data input from a large number of sensors used in HVAC system, the faults can be very difficult to detect in the early stage. While numerous fault detection and diagnosis (FDD) methods with the use of statistical modeling and machine learning have revealed prominent results in recent years, early detection remains a challenging task since many current approaches are unfeasible for diagnosing some HVAC faults and have accuracy performance issues. In view of this, this study presents a novel hybrid FDD approach by combining random forest (RF) and support vector machine (SVM) classifiers for the application of FDD for the HVAC system. Experimental results demonstrate that our proposed hybrid random forest-support vector machine (HRF-SVM) outperforms other methods with higher prediction accuracy (98%), despite that the fault symptoms were insignificant. Furthermore, the proposed framework can reduce the significant number of sensors required and work well with the small number of faulty training data samples available in real-world applications.


Subject(s)
Air Conditioning , Support Vector Machine , Heating , Machine Learning , Models, Statistical
6.
Data Brief ; 37: 107166, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34150960

ABSTRACT

The importance of the security of building management systems (BMSs) has increased given the advances in the technologies used. Since the Heating, Ventilation, and Air Conditioning (HVAC) system in buildings accounts for about 40% of the total energy consumption, threats targeting the HVAC system can be quite severe and costly. Given the limitations on accessing a real HVAC system for research purposes and the unavailability of public labeled datasets to investigate the cybersecurity of HVAC systems, this paper presents a dataset of a 12-zone HVAC system that was collected from a simulation model using the Transient System Simulation Tool (TRNSYS). It aims to promote and support the research in the field of cybersecurity of HVAC systems in smart buildings [1] by facilitating the validation of attack detection and mitigation strategies, benchmarking the performance of different data-driven algorithms, and studying the impact of attacks on the HVAC system.

7.
Article in English | MEDLINE | ID: mdl-29958470

ABSTRACT

This paper summarizes the results of HealthVent project. It had an aim to develop health-based ventilation guidelines and through this process contribute to advance indoor air quality (IAQ) policies and guidelines. A framework that allows determining ventilation requirements in public and residential buildings based on the health requirements is proposed. The framework is based on three principles: 1. Criteria for permissible concentrations of specific air pollutants set by health authorities have to be respected; 2. Ventilation must be preceded by source control strategies that have been duly adopted to improve IAQ; 3. Base ventilation must always be secured to remove occupant emissions (bio-effluents). The air quality guidelines defined by the World Health Organization (WHO) outside air are used as the reference for determining permissible levels of the indoor air pollutants based on the principle that there is only one air. It is proposed that base ventilation should be set at 4 L/s per person; higher rates are to be used only if WHO guidelines are not followed. Implementation of the framework requires technical guidelines, directives and other legislation. Studies are also needed to examine the effectiveness of the approach and to validate its use. It is estimated that implementing the framework would bring considerable reduction in the burden of disease associated with inadequate IAQ.


Subject(s)
Air Pollutants/analysis , Air Pollutants/standards , Air Pollution, Indoor/prevention & control , Air Pollution/prevention & control , Guidelines as Topic , Housing/standards , Ventilation/standards , Humans
8.
Sensors (Basel) ; 18(1)2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29316720

ABSTRACT

The goal of this study was to investigate the performance of a realistic wireless sensor nodes deployment in order to support modern building management systems (BMSs). A three-floor building orientation is taken into account, where each node is equipped with a multi-antenna system while a central base station (BS) collects and processes all received information. The BS is also equipped with multiple antennas; hence, a multiple input-multiple output (MIMO) system is formulated. Due to the multiple reflections during transmission in the inner of the building, a wideband code division multiple access (WCDMA) physical layer protocol has been considered, which has already been adopted for third-generation (3G) mobile networks. Results are presented for various MIMO orientations, where the mean transmission power per node is considered as an output metric for a specific signal-to-noise ratio (SNR) requirement and number of resolvable multipath components. In the first set of presented results, the effects of multiple access interference on overall transmission power are highlighted. As the number of mobile nodes per floor or the requested transmission rate increases, MIMO systems of a higher order should be deployed in order to maintain transmission power at adequate levels. In the second set of results, a comparison is performed among transmission in diversity combining and spatial multiplexing mode, which clearly indicate that the first case is the most appropriate solution for indoor communications.

SELECTION OF CITATIONS
SEARCH DETAIL