Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.635
Filter
1.
J Headache Pain ; 25(1): 136, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169303

ABSTRACT

BACKGROUND: Migraine is a neurological disorder characterized by complex, widespread, and sudden attacks with an unclear pathogenesis, particularly in chronic migraine (CM). Specific brain regions, including the insula, amygdala, thalamus, and cingulate, medial prefrontal, and anterior cingulate cortex, are commonly activated by pain stimuli in patients with CM and animal models. This study employs fluorescence microscopy optical sectioning tomography (fMOST) technology and AAV-PHP.eB whole-brain expression to map activation patterns of brain regions in CM mice, thus enhancing the understanding of CM pathogenesis and suggesting potential treatment targets. METHODS: By repeatedly administering nitroglycerin (NTG) to induce migraine-like pain in mice, a chronic migraine model (CMM) was established. Olcegepant (OLC) was then used as treatment and its effects on mechanical pain hypersensitivity and brain region activation were observed. All mice underwent mechanical withdrawal threshold, light-aversive, and elevated plus maze tests. Viral injections were administered to the mice one month prior to modelling, and brain samples were collected 2 h after the final NTG/vehicle control injection for whole-brain imaging using fMOST. RESULTS: In the NTG-induced CMM, mechanical pain threshold decreased, photophobia, and anxiety-like behavior were observed, and OLC was found to improve these manifestations. fMOST whole-brain imaging results suggest that the isocortex-cerebral cortex plate region, including somatomotor areas (MO), somatosensory areas (SS), and main olfactory bulb (MOB), appears to be the most sensitive area of activation in CM (P < 0.05). Other brain regions such as the inferior colliculus (IC) and intermediate reticular nucleus (IRN) were also exhibited significant activation (P < 0.05). The improvement in migraine-like symptoms observed with OLC treatment may be related to its effects on these brain regions, particularly SS, MO, ansiform lobule (AN), IC, spinal nucleus of the trigeminal, caudal part (Sp5c), IRN, and parvicellular reticular nucleus (PARN) (P < 0.05). CONCLUSIONS: fMOST whole-brain imaging reveals c-Fos + cells in numerous brain regions. OLC improves migraine-like symptoms by modulating brain activity in some brain regions. This study demonstrates the activation of the specific brain areas in NTG-induced CMM and suggests some regions as a potential treatment mechanism according to OLC.


Subject(s)
Brain , Disease Models, Animal , Migraine Disorders , Nitroglycerin , Animals , Nitroglycerin/toxicity , Nitroglycerin/pharmacology , Nitroglycerin/administration & dosage , Migraine Disorders/chemically induced , Migraine Disorders/diagnostic imaging , Migraine Disorders/metabolism , Migraine Disorders/drug therapy , Mice , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Male , Proto-Oncogene Proteins c-fos/metabolism , Mice, Inbred C57BL , Brain Mapping , Vasodilator Agents/pharmacology , Vasodilator Agents/administration & dosage , Pain Threshold/drug effects
2.
J Ethnopharmacol ; 335: 118673, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121931

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVENACE: Sertoli cells are vital to maintain spermatogenesis and their function decline during aging. Epimedium has the effects of tonifying kidney-yang, strengthening bones and muscles, and expelling wind and dampness, and is commonly used in the treatment of kidney-yang deficiency, impotence and spermatorrhea. Icariin is the main active ingredients from Epimedium exhibiting delaying aging effects and improving male reproductive dysfunction. Whereas, it remains poorly understood how icariin alleviates age-associated decline in testicular function by protecting against the damage of junction function of Sertoli cells. AIM OF THE STUDY: This study aimed to evaluate the improvement effect of icariin on Sertoli cell junction function damage and explore the underlying mechanisms. MATERIALS AND METHODS: Male C57BL/6 mice and mouse Sertoli cell line TM4 cells were utilized to assess the improvement effect of icariin on aging-associated Sertoli cell junction function injury. H&E staining, transmission electron microscopy, qPCR, Western blot, molecular docking, siRNA transfection, and immunofluorescence were performed in this study. RESULTS: Dietary administration of icariin remarkly attenuated age-associated deterioration in spermatogenic function as evidenced by elevated testicular weight and index, sperm concentration and sperm viability. In addition, icariin protected Sertoli cell junction function from age-associated damage as proven by increased Sertoli cell numbers, improved tight junction ultrastructure, and upregulated junction-related proteins (ZO-1, Occludin and ß-Catenin). Moreover, icariin significantly upregulated ERα/c-fos signaling and PKR pathway in testicular Sertoli cells. Similarly, in vitro studies revealed that deletion of ERα, c-fos or PKR abolished the improvement effects of icariin on Sertoli cell junction function damage. CONCLUSIONS: Icariin effectively mitigates age-associated decline in testicular function by diminished Sertoli cell junction function damage through upregulating PKR pathway via ERα/c-fos signaling. Therefore, attenuating Sertoli cell junction function injury by the upregulation of PKR pathway via ERα/c-fos signaling probably indicates an effective target for the prevention and treatment of testicular spermatogenic function with aging.

3.
J Adv Res ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089619

ABSTRACT

INTRODUCTION: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.

4.
Adv Healthc Mater ; : e2401303, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39139004

ABSTRACT

Neurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized. Stimulation of primary rat cortical neurons results in an elevated expression of c-Fos within a mature neuronal network. OEPC implantation for three weeks and subsequent stimulation of the somatosensory cortex leads to an increase of c-Fos in neurons at the stimulation site and in connected brain regions (entorhinal cortex, hippocampus), both in the ipsi- and contralateral hemispheres. Reactivity of glial and immune cells after semi-chronic implantation of OEPC in the rat brain is comparable to that of surgical controls, indicating minimal foreign body response. Device functionality is further substantiated through retained charging dynamics following explantation. OEPC-based, light-controlled electric stimulation has a significant impact on neural responsiveness. The absence of detrimental effects on both the brain and device encourages further use of OEPC as cortical implants. These findings highlight its potential as a novel mode of neurostimulation and instigate further exploration into applications in fundamental neuroscience.

5.
J Alzheimers Dis ; 101(1): 111-131, 2024.
Article in English | MEDLINE | ID: mdl-39121131

ABSTRACT

Background: While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective: We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods: c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results: Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions: Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Mice, Transgenic , Proto-Oncogene Proteins c-fos , Synapses , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Synapses/pathology , Synapses/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Mice , Male , Female , Visual Cortex/metabolism , Visual Cortex/pathology , Mice, Inbred C57BL
6.
Vet Microbiol ; 297: 110211, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39096790

ABSTRACT

Porcine deltacoronavirus (PDCoV), a cross-species transmissible enterovirus, frequently induces severe diarrhea and vomiting symptoms in piglets, which not only pose a significant menace to the global pig industry but also a potential public safety risk. In a previous study, we isolated a vaccine candidate, PDCoV CZ2020-P100, by passaging a parental PDCoV strain in vitro, exhibiting attenuated virulence and enhanced replication. However, the factors underlying these differences between primary and passaged strains remain unknown. In this study, we present the transcriptional landscapes of porcine kidney epithelial cells (LLC-PK1) cells infected with PDCoV CZ2020-P1 strain and P100 strain using the RNA-sequencing. We identified 105 differentially expressed genes (DEGs) in P1-infected cells and 295 DEGs in P100-infected cells. Enrichment analyses indicated that many DEGs showed enrichment in immune and inflammatory responses, with a more and higher upregulation of DEGs enriched in the P100-infected group. Notably, the DEGs were concentrated in the MAPK pathway within the P100-infected group, with significant upregulation in EphA2 and c-Fos. Knockdown of EphA2 and c-Fos reduced PDCoV infection and significantly impaired P100 replication compared to P1, suggesting a novel mechanism in which EphA2 and c-Fos are highly involved in passaged virus replication. Our findings illuminate the resemblances and distinctions in the gene expression patterns of host cells infected with P1 and P100, confirming that EphA2 and c-Fos play key roles in high-passage PDCoV replication. These results enhance our understanding of the changes in virulence and replication capacity during the process of passaging.


Subject(s)
Deltacoronavirus , Receptor, EphA2 , Transcriptome , Virus Replication , Animals , Swine , Deltacoronavirus/genetics , Deltacoronavirus/physiology , Deltacoronavirus/pathogenicity , Receptor, EphA2/genetics , Swine Diseases/virology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , LLC-PK1 Cells , Cell Line , Coronavirus Infections/virology , Coronavirus Infections/veterinary
7.
Neurotrauma Rep ; 5(1): 749-759, 2024.
Article in English | MEDLINE | ID: mdl-39184177

ABSTRACT

Central autonomic and endocrine dysfunctions following traumatic brain injury (TBI) are believed to involve the hypothalamus; however, underlying mechanisms are unknown. Although chronic deficits might be caused by irreversible tissue damage, various neuroendocrine and autonomic symptoms are only observed transiently, suggesting they might result from a temporary alteration in the activity of hypothalamic neurons. We therefore examined if a mouse model of mild TBI could induce reversible autonomic phenotypes and cause acute changes in c-Fos expression within corresponding regions of the hypothalamus. Adult C57Bl/6 male mice were lightly anesthetized with isoflurane and subjected to TBI by lateral head impact using a Gothenburg impactor. Mice treated the same way, but without the head impact served as controls (shams). We monitored body weight and core body temperature by infrared thermography and performed immunohistochemistry against c-Fos in various regions of the hypothalamus. We determined that a projectile velocity of 9 m/s significantly delayed recovery from the anesthesia without inducing skull fractures and signs of discomfort disappeared within 3 h, as assessed by grimace scale. Compared with shams, TBI mice displayed a rapid decrease in core body temperature which resolved within 48 h. Daily body weight gain was also significantly lower in TBI mice on the day following injury but recovered thereafter. c-Fos analysis revealed a significantly higher density of c-Fos-positive cells in the paraventricular nucleus and a significantly lower density in the median preoptic nucleus and medial preoptic area. We conclude that mild TBI induced by a single lateral head impact in mice at 9 m/s produces acute and reversible symptoms associated with hypothalamic dysfunction accompanied by significant changes in c-Fos expression within relevant areas of the hypothalamus. These findings support the hypothesis that a temporary alteration of neuronal activity may underlie the expression of reversible central autonomic and neuroendocrine symptoms.

8.
Biochem Biophys Res Commun ; 734: 150479, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39088982

ABSTRACT

It is crucial to develop novel antidepressants. Dexmedetomidine (DEX) can exert antidepressant effects, but its underlying mechanism remains unclear. We used chronic restraint stress (CRS) to induce depression-like behaviour in mice and administered low-dose DEX (2 µg/kg per day) during CRS modelling or one injection of high-dose DEX (20 µg/kg) after CRS. The results of the behavioural tests revealed that both methods ameliorated CRS-induced depression. The brain slices of the mice were subjected to immunohistochemical staining for c-fos and phosphorylated ERK (pERK). Results showed that the continuous low-dose DEX-treated group, but not the single high-dose DEX-treated group expressed less c-fos in the nucleus locus coeruleus (LC) with a mean optical density (MOD) of 0.06. Other brain regions, including the dentate gyrus (DG), pyriform cortex (Pir), anterior part of paraventricular thalamic nucleus (PVA), arcuate nucleus (Arc), and core or shell of accumbens nucleus (Acbc or Acbs), presented differences in c-fos expression. In contrast, the low-dose DEX-treated group exhibited three-fold greater pERK expression in the LC of the CRS mice, with a MOD of 0.15. Pir, cingulate cortex (Cg) and, anterior and posterior part of paraventricular thalamic nucleus (PVA and PVP) exhibited pERK expression differences due to distinct reagent treatments. These changes indicate that the responses of brain regions to different DEX administration methods and doses vary. This study confirmed the ability of DEX to ameliorate CRS-induced depression and identified candidate target brain regions, thus providing new information for the antidepressant mechanism of DEX.

9.
Eur J Pharmacol ; 979: 176768, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39002637

ABSTRACT

Previous studies from our laboratory have shown sex differences in the behavioral, molecular, and neurochemical manifestations of morphine withdrawal and they were related to an increased sensitivity to morphine effects in males. In addition, we observed an interaction between the GABAergic and opioid systems that could also be sex-dependent. Baclofen, a GABAB receptor agonist, prevented the somatic expression and the molecular and neurochemical changes induced by morphine withdrawal syndrome in mice. On the contrary, little is known about baclofen effects in the rewarding properties of morphine in male and female mice. The present study aimed to explore the effect of baclofen (1, 2 and 3 mg/kg, i.p.) pretreatment in the rewarding effects induced by morphine (7 mg/kg, s.c.) and its effect on c-Fos and brain-derived neurotrophic factor (BDNF) expression induced by the rewarding properties of morphine in prepubertal male and female mice. Baclofen (2 mg/kg) pretreatment prevented the rewarding effects of morphine only in male mice, while baclofen (3 mg/kg) reduced these effects in both sexes. Moreover, the rewarding effects of morphine were associated with a decrease of BDNF and c-Fos expression cingulate cortex, nucleus accumbens shell, cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) areas of the hippocampus only in male mice. In addition, baclofen pretreatment prevented these changes in BDNF, but not in c-Fos expression. In conclusion, our results show that GABAB receptors have a regulatory role in the rewarding effects of morphine that could be of interest for a potential future therapeutic application in opioid use disorders.


Subject(s)
Baclofen , Brain-Derived Neurotrophic Factor , Morphine , Proto-Oncogene Proteins c-fos , Reward , Animals , Baclofen/pharmacology , Male , Female , Morphine/pharmacology , Mice , Brain-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-fos/metabolism , GABA-B Receptor Agonists/pharmacology , Sex Characteristics , Behavior, Animal/drug effects , Sex Factors
10.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39057053

ABSTRACT

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

11.
Neurobiol Learn Mem ; 213: 107952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906243

ABSTRACT

The ability to learn and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined whether early life stress (ELS) alters memory and brain activation patterns in male mice. Therefore, we examined the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also altered the colocalization of c-Fos+ cells with Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of ELS on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.


Subject(s)
Basolateral Nuclear Complex , Dentate Gyrus , Fear , Mifepristone , Stress, Psychological , Animals , Fear/physiology , Male , Stress, Psychological/metabolism , Mice , Basolateral Nuclear Complex/metabolism , Dentate Gyrus/metabolism , Mifepristone/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Female , Memory/physiology , Conditioning, Classical/physiology , Nerve Tissue Proteins/metabolism , Genes, Immediate-Early/physiology , Cytoskeletal Proteins/metabolism , Mental Recall/physiology , Mice, Inbred C57BL
12.
Neurochem Res ; 49(9): 2573-2599, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896196

ABSTRACT

Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.


Subject(s)
Astrocytes , Autism Spectrum Disorder , Chlorpyrifos , Glutamic Acid , Neuroinflammatory Diseases , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Glutamic Acid/metabolism , Chlorpyrifos/toxicity , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Male , Rats, Wistar , Rats , Animals, Newborn , Female , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology
13.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928250

ABSTRACT

Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.


Subject(s)
Fear , Memory , Proto-Oncogene Proteins c-fos , Stress Disorders, Post-Traumatic , Animals , Male , Mice , Brain/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Protein Biosynthesis , Protein Synthesis Inhibitors/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Stress Disorders, Post-Traumatic/metabolism
14.
Biochem Biophys Res Commun ; 726: 150251, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38936249

ABSTRACT

Social behavior, defined as any mode of communication between conspecifics is regulated by a widespread network comprising multiple brain structures. The anterior cingulate cortex (ACC) serves as a hub region interconnected with several brain regions involved in social behavior. Because the ACC coordinates various behaviors, it is important to focus on a subpopulation of neurons that are potentially involved in social behavior to clarify the precise role of the ACC in social behavior. In this study, we aimed to analyze the roles of a social stimulus-responsive subpopulation of neurons in the ACC in social behavior in mice. We demonstrated that a subpopulation of neurons in the ACC was activated by social stimuli and that silencing the social stimulus-responsive subpopulation of neurons in the ACC significantly impaired social interaction without affecting locomotor activity or anxiety-like behavior. Our current findings highlight the importance of the social stimulus-responsive subpopulation of neurons in the ACC for social behavior and the association between ACC dysfunction and impaired social behavior, which sheds light on therapeutic interventions for psychiatric conditions.


Subject(s)
Gyrus Cinguli , Mice, Inbred C57BL , Neurons , Social Behavior , Animals , Gyrus Cinguli/physiology , Neurons/physiology , Neurons/metabolism , Mice , Male , Anxiety/physiopathology , Behavior, Animal/physiology
15.
Sleep Breath ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836924

ABSTRACT

PURPOSE: Hypoxia and sleep fragmentations that develop during sleep cause central nervous system damage in patients with obstructive sleep apnea (OSA). This study investigates the relationship between OSA severity and glial fibrillary acidic protein (GFAP) and c-Fos, which are considered indicators of neuronal damage. METHODS: The study included 84 participants (70 patients with OSA and 14 healthy individuals). All participants were evaluated with the Epworth Sleepiness Scale (ESS) before polysomnography (PSG), and serum GFAP and c-Fos values were measured after PSG. All participants were grouped according to the apnea-hypopnea index (AHI) score (control: AHI < 5, Mild OSA: 5 ≤ AHI < 15; moderate OSA: 15 ≤ AHI < 30; severe OSA: AHI ≥ 30). RESULTS: The average age of the participants was 48.5 ± 11.4 years. According to AHI scoring, 14 healthy individuals (16.7%) were in the control group, and 70 patients (83.3%) were in OSA groups. The serum GFAP levels and c-Fos levels were increased in the OSA groups (7.1 ± 5.7 ng/mL and 7.9 ± 7.5 pg/mL respectively) compared to the control group (1.3 ± 0.4 ng/mL and 2.7 ± 1.4 pg/mL p < 0.001 and p < 0.01, respectively). There was a significant positive correlation between AHI and oxygen desaturation index (ODI) values, which indicate disease severity, and serum c-Fos (r: 0.381 and r:0.931, p < 0.01, respectively) and GFAP (r: 0.793 and r:0.745, p < 0.01, respectively) values. CONCLUSION: Serum GFAP and c-Fos values, which are considered indicators of neuronal damage, can be used as a serum marker to determine disease severity in OSA.

16.
Clin Sci (Lond) ; 138(13): 797-815, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38840498

ABSTRACT

IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.


Subject(s)
Acute Lung Injury , Cell Proliferation , Endothelial Cells , Insulin-Like Growth Factor Binding Proteins , Animals , Humans , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor Binding Proteins/genetics , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Signal Transduction , YAP-Signaling Proteins/metabolism
17.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38690647

ABSTRACT

Hibernation is an extreme state of seasonal energy conservation, reducing metabolic rate to as little as 1% of the active state. During the hibernation season, many species of hibernating mammals cycle repeatedly between the active (aroused) and hibernating (torpid) states (T-A cycling), using brown adipose tissue (BAT) to drive cyclical rewarming. The regulatory mechanisms controlling this process remain undefined but are presumed to involve thermoregulatory centres in the hypothalamus. Here, we used the golden hamster (Mesocricetus auratus), and high-resolution monitoring of BAT, core body temperature and ventilation rate, to sample at precisely defined phases of the T-A cycle. Using c-fos as a marker of cellular activity, we show that although the dorsomedial hypothalamus is active during torpor entry, neither it nor the pre-optic area shows any significant changes during the earliest stages of spontaneous arousal. Contrastingly, in three non-neuronal sites previously linked to control of metabolic physiology over seasonal and daily time scales - the choroid plexus, pars tuberalis and third ventricle tanycytes - peak c-fos expression is seen at arousal initiation. We suggest that through their sensitivity to factors in the blood or cerebrospinal fluid, these sites may mediate metabolic feedback-based initiation of the spontaneous arousal process.


Subject(s)
Arousal , Choroid Plexus , Ependymoglial Cells , Hibernation , Proto-Oncogene Proteins c-fos , Torpor , Animals , Cricetinae , Male , Adipose Tissue, Brown/metabolism , Arousal/genetics , Choroid Plexus/metabolism , Ependymoglial Cells/metabolism , Hibernation/genetics , Mesocricetus , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Torpor/genetics
18.
Neurobiol Learn Mem ; 213: 107942, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38815677

ABSTRACT

The amygdala has been implicated in frustrative nonreward induced by unexpected reward downshifts, using paradigms like consummatory successive negative contrast (cSNC). However, existing evidence comes from experiments involving the central and basolateral nuclei on a broad level. Moreover, whether the amygdala's involvement in reward downshift requires a cSNC effect (i.e., greater suppression in downshifted animals than in unshifted controls) or just consummatory suppression without a cSNC effect, remains unclear. Three groups were exposed to (1) a large reward disparity leading to a cSNC effect (32-to-2% sucrose), (2) a small reward disparity involving consummatory suppression in the absence of a cSNC effect (8-to-2% sucrose), and (3) an unshifted control (2% sucrose). Brains obtained after the first reward downshift session were processed for c-Fos expression, a protein often used as a marker for neural activation. c-Fos-positive cells were counted in the anterior, medial, and posterior portions (A/P axis) of ten regions of the rat basolateral, central, and medial amygdala. c-Fos expression was higher in 32-to-2% sucrose downshift animals than in the other two groups in four regions: the anterior and the medial lateral basal amygdala, the medial capsular central amygdala, and the anterior anterio-ventral medial amygdala. None of the areas exhibited differential c-Fos expression between the 8-to-2% sucrose downshift and the unshifted conditions. Thus, amygdala activation requires exposure to a substantial reward disparity. This approach has identified, for the first time, specific amygdala areas relevant to understand the cSNC effect, suggesting follow-up experiments aimed at testing the function of these regions in reward downshift.


Subject(s)
Amygdala , Proto-Oncogene Proteins c-fos , Reward , Animals , Amygdala/metabolism , Amygdala/physiology , Proto-Oncogene Proteins c-fos/metabolism , Male , Rats , Rats, Wistar , Consummatory Behavior/physiology
19.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780087

ABSTRACT

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Subject(s)
Dentate Gyrus , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Sucrose , Animals , Male , Rats , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Discrimination Learning/drug effects , Discrimination Learning/physiology , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Excitatory Amino Acid Antagonists/pharmacology , Memory/physiology , Memory/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Receptors, AMPA/metabolism , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , RNA, Messenger/metabolism , Self Administration , Sucrose/administration & dosage
20.
Chemosphere ; 359: 142299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761826

ABSTRACT

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Subject(s)
Chondrogenesis , Larva , Mustard Gas , Proto-Oncogene Proteins c-fos , Transcription Factor AP-1 , Zebrafish , Animals , Mustard Gas/toxicity , Larva/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Chondrogenesis/drug effects , Transcription Factor AP-1/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL