Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.027
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848852

ABSTRACT

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.


Subject(s)
Bone and Bones , Calcium Compounds , Nanoparticles , Oxides , Polyesters , Starch , Tissue Engineering , Tissue Scaffolds , Starch/chemistry , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Nanoparticles/chemistry , Oxides/chemistry , Calcium Compounds/chemistry , Rats , Mice , Biocompatible Materials/chemistry , Rats, Wistar , Cell Line , Nanocomposites/chemistry
2.
Plant Biol (Stuttg) ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886872

ABSTRACT

In Mediterranean regions, severe summers are becoming more common, leading to restrictions to vine productivity and yield quality, requiring sustainable practices to support this sector. We assessed the behaviour of three red grapevine varieties from the Douro Region to examine their tolerance to summer climate stress from the perspective that the less common varieties may have potential for increased use in a climate change scenario. Leaf and fruit biochemical profile, antioxidant activity and fruit colorimetric parameters were assessed at different phenological stages in Aragonez (AR), Tinto Cão (TC) and Touriga Nacional (TN) grape varieties. All three varieties exhibit significant variability in phenological timing, influenced by genetic and environmental factors. Photosynthetic pigment strategies differed among varieties. Chlorophyll content in AR was high to cope with high radiation, while TN displaying a balanced approach, and TC had lower pigment levels, with higher levels of phenolics, antioxidants, and soluble sugars, particularly during stress. The variations in berry biochemical profile highlight the distinct characteristics of the varieties. TC and TN show potential for coping with climate change, having elevated total acidity, while AR has larger and heavier berries with distinct coloration. These findings reinforce the need to study the behaviour of different varieties in each Terroir, to understand their diverse strategies to deal with summer climate stress. This will help in selecting the most suitable variety for these conditions under vineyard management in the Douro Region.

3.
Environ Res ; 258: 119449, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901814

ABSTRACT

In the current study, Coccinia grandis fruit extract was used to synthesize calcium oxide nanoparticles (CaO NPs) in an economical and environmentally friendly manner. UV-Vis spectroscopy and Fourier transform infrared spectroscopy revealed that the phytoconstituents found in Coccinia grandis fruit extract facilitated the production of CaO NPs by acting as better stabilizing, biodegradable, and reducing agents. The synthesized CG-CaO NPs were also tested for photocatalytic activity in the breakdown of selective dyes such as methyl red, methyl orange, and methylene blue in the presence of sunlight. The degradation percentage was determined by analyzing the color removal rates for all dye components. After 6 h of reaction, the IC50 values for methyl red, methyl orange, as well as methylene blue dyes were 73, 107, and 133, respectively. The CG-CaO NPs were further evaluated for their antimicrobial activity against specific bacteria and fungi using the agar-well diffusion method. 200 µg/mL CG-CaO NPs inhibited Aspergillus niger, Escherichia coli, Salmonella typhi, Streptococcus mutans, and Staphylococcus aureus at zones of 13, 14, 16, 14, and 15 mM, respectively. Further checkerboard assay confirmed the antagonism effect with gentamicin. Also, Artemia salina toxicity assay showed that the LD50 value of CaO NPs was 400 µg/mL of CaO NPs. The findings confirm that Coccinia grandis-mediated CG-CaO NPs can be used effectively in antimicrobial and environmental settings.

4.
Environ Sci Pollut Res Int ; 31(27): 39823-39838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833049

ABSTRACT

Sea surface temperature (SST), with its complex and dynamic behavior, is a major driver of ocean-atmosphere interactions. The purpose of this study is to investigate the behavior of SST and its prediction using a chaotic approach. Average mutual information (AMI) and Cao methods were used to reconstruct the phase space. The Lyapunov exponent and correlation dimension were used to investigate chaos. The Lyapunov exponent index was used to predict SST with a 5-year average prediction horizon using the local prediction method between 2023 and 2027. The results showed a 3-month delay time for the Pacific and Antarctic Oceans, and a 2-month delay time for the Atlantic, Indian, and Arctic Oceans. The optimal embedding dimension for all oceans is between 6 and 7. Our analysis reveals that the dynamics of SST in all oceans exhibit varying degrees of chaos, as indicated by the correlation dimension. The local prediction method achieves relatively accurate short-term SST predictions due to the clustering of SST points around specific attractors in the phase space. However, in the long term, the accuracy of this method decreases as the points in the phase space of SST can spread randomly. The model performance ranking with a Percent Mean Relative Absolute Error shows that the Indian Ocean has the best performance compared to other oceans, while the Atlantic, Pacific, and Antarctic and Arctic Oceans are in the next ranks. This study contributes to understanding the dynamics of SST and has practical value for use in the development of climate models.


Subject(s)
Temperature , Models, Theoretical , Oceans and Seas
5.
Chem Biol Interact ; 398: 111076, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38815669

ABSTRACT

Mitophagy is a distinct physiological process that can have beneficial or deleterious effects in particular tissues. Prior research suggests that mitophagic activity can be triggered by CaO2-PM-CsPbBr3 QDs, yet the specific role that mitophagy plays in hepatic injury induced by CaO2-PM-CsPbBr3 QDs has yet to be established. Accordingly, in this study a series of mouse model- and cell-based experiments were performed that revealed the ability of CaO2-PM-CsPbBr3 QDs to activate mitophagic activity. Golm1 was upregulated in response to CaO2-PM-CsPbBr3 QDs treatment, and overexpressing Golm1 induced autophagic flux in the murine liver and hepatocytes, whereas knocking down Golm1 had the opposite effect. CaO2-PM-CsPbBr3 QDs were also able to Golm1 expression, in turn promoting the degradation of P53 and decreasing the half-life of this protein. Overexpressing Golm1 was sufficient to suppress the apoptotic death of hepatocytes in vitro and in vivo, whereas the knockdown of Golm1 had the opposite effect. The ability of Golm1 to promote p53-mediated autophagy was found to be associated with the disruption of Beclin-1 binding to Bcl-2, and the Golm1 N-terminal domain was determined to be required for p53 interactions, inducing autophagic activity in a manner independent of helicase activity or RNA binding. Together, these results indicate that inhibiting Golm1 can promote p53-dependent autophagy via disrupting Beclin-1 binding to Bcl-2, highlighting a novel approach to mitigating liver injury induced by CaO2-PM-CsPbBr3 QDs.


Subject(s)
Apoptosis , Autophagy , Beclin-1 , Hepatocytes , Membrane Proteins , Mitochondria , Proto-Oncogene Proteins c-bcl-2 , Quantum Dots , Reactive Oxygen Species , Tumor Suppressor Protein p53 , Animals , Hepatocytes/metabolism , Hepatocytes/cytology , Tumor Suppressor Protein p53/metabolism , Beclin-1/metabolism , Mice , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Quantum Dots/chemistry , Membrane Proteins/metabolism , Membrane Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Humans , Mitophagy , Male , Mice, Inbred C57BL
6.
Environ Technol ; : 1-11, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619987

ABSTRACT

Coupling chemical oxidation and biodegradation to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated sediment has recently gained significant attention. In this study, calcium peroxide nanoparticles (nCaO2) were utilized as an innovative oxygen-releasing compound for in-situ chemical oxidation. The study investigates the bioremediation of phenanthrene (PHE)-contaminated sediment inoculated with Sphingomonas sp. DSM 7526 bacteria and treated with either aeration or nCaO2. Using three different culture media, the biodegradation efficiencies of PHE-contaminated anoxic sediment, aerobic sediment, and sediment treated with 0.2% w/w nCaO2 ranged from 57.45% to 63.52%, 69.87% to 71.00%, and 92.80% to 94.67%, respectively. These values were significantly higher compared to those observed in non-inoculated sediments. Additionally, the type of culture medium had a prominent effect on the amount of PHE removal. The presence of minerals in the culture medium increased the percentage of PHE removal compared to distilled water by about 2-10%. On the other hand, although the application of CaO2 nanoparticles negatively impacted the abundance of sediment bacteria, resulting in a 30-42% decrease in colony-forming units after 30 days of treatment, the highest PHE removal was obtained when coupling biodegradation and chemical oxidation. These findings demonstrate the successful application of bioaugmentation and chemical oxidation processes for treating PAH-contaminated sediment.

7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612389

ABSTRACT

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Subject(s)
Biofuels , Zeolites , Magnesium Oxide , Methanol , Rapeseed Oil , Silicon Dioxide , Fatty Acids , Oxides
8.
J Environ Manage ; 359: 120782, 2024 May.
Article in English | MEDLINE | ID: mdl-38669884

ABSTRACT

Capturing CO2 using clamshell/eggshell-derived CaO adsorbent can not only reduce carbon emissions but also alleviate the impact of trash on the environment. However, organic acid was usually used, high-temperature calcination was often performed, and CO2 was inevitably released during preparing CaO adsorbents from shell wastes. In this work, CaO-based CO2 adsorbent was greenly prepared by calcium-induced hydrogenation of clamshell and eggshell wastes in one pot at room/moderate temperature. CO2 adsorption experiments were performed in a thermogravimetric analyzer (TGA). The adsorption performance of the adsorbents obtained from the mechanochemical reaction (BM-C/E-CaO) was superior to that of the adsorbents obtained from the thermochemical reaction (Cal-C/E-CaO). The CO2 adsorption capacity of BM-C-CaO at 650 °C is up to 36.82 wt%, but the adsorption decay rate of the sample after 20 carbonation/calcination cycles is only 30.17%. This study offers an alternative energy-saving method for greenly preparing CaO-based adsorbent from shell wastes.


Subject(s)
Carbon Dioxide , Green Chemistry Technology , Refuse Disposal , Green Chemistry Technology/methods , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Hydrogenation , Temperature , Animal Shells/chemistry , Egg Shell/chemistry , Refuse Disposal/methods , Adsorption
9.
ACS Appl Mater Interfaces ; 16(15): 18459-18473, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578815

ABSTRACT

Reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) hold great promise for tumor treatment. However, hypoxia, insufficient H2O2, and overexpressed glutathione (GSH) in the tumor microenvironment (TME) hinder ROS generation significantly. Herein, we reported CaO2@Cu-TCPP/CUR with O2/H2O2/Ca2+ self-supply and GSH depletion for enhanced PDT/CDT and Ca2+ overload synergistic therapy. CaO2 nanospheres were first prepared and used as templates for guiding the coordination between the carboxyl of tetra-(4-carboxyphenyl)porphine (TCPP) and Cu2+ ions as hollow CaO2@Cu-TCPP, which facilitated GSH-activated TCPP-based PDT and Cu+-mediated CDT. The hollow structure was then loaded with curcumin (CUR) to form CaO2@Cu-TCPP/CUR composites. Cu-TCPP prevented degradation of CaO2, while Cu2+ ions reacted with GSH to deplete GSH, produce Cu+ ions, and release TCPP, CaO2, and CUR. CaO2 reacted with H2O to generate O2, H2O2, and Ca2+ to achieve O2/H2O2/Ca2+ self-supply for TCPP-based PDT, Cu+-mediated CDT, and CUR-enhanced Ca2+ overload therapy. Thus, this multilevel ROS amplifier enhances synergistic therapy with fewer side effects and drug resistance.


Subject(s)
Curcumin , Nanospheres , Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species , Hydrogen Peroxide , Glutathione , Tumor Microenvironment , Cell Line, Tumor , Oxygen
10.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575032

ABSTRACT

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Subject(s)
Durapatite , Peroxides , Water Pollutants, Chemical , Durapatite/chemistry , Water Pollutants, Chemical/analysis , Peroxides/chemistry , Metals, Heavy , Geologic Sediments/chemistry , Environmental Restoration and Remediation/methods
11.
Environ Technol ; : 1-12, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525909

ABSTRACT

Heat pump drying is a low-carbon method of sludge drying. The operating temperature of a heat pump is generally not more than 70℃. To improve the drying efficiency of heat pump dryers, the effects of air parameters and additives on sludge drying characteristics at low temperatures were studied. The sludge drying experiments were conducted at an air temperature 50-70℃ and an air velocity of 0.5-1.7 m/s. The experimental results showed that the increase of air temperature, velocity and the addition ratio of additives can accelerate the sludge drying process. The average and maximum drying rates of sludge pre-conditioned by CaO and sawdust increased by 14.23% and 25.71%, respectively, compared with those of pure sludge. The two-way analysis of variance (ANOVA) revealed that the influence of air temperature on the sludge drying was higher than that of air velocity. Five reference models were fitted by the drying experiment data. The Page model has the highest R2, so it is the most suitable model to predict the drying time of sludge at low temperatures.

12.
Molecules ; 29(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338403

ABSTRACT

This research constructed a novel O3/CaO2/HCO3- system to degrade antibiotic oxytetracycline (OTC) in water. The results indicated that CaO2 and HCO3- addition could promote OTC degradation in an O3 system. There is an optimal dosage of CaO2 (0.05 g/L) and HCO3- (2.25 mmol/L) that promotes OTC degradation. After 30 min of treatment, approximately 91.5% of the OTC molecules were eliminated in the O3/CaO2/HCO3- system. A higher O3 concentration, alkaline condition, and lower OTC concentration were conducive to OTC decomposition. Active substances including ·OH, 1O2, ·O2-, and ·HCO3- play certain roles in OTC degradation. The production of ·OH followed the order: O3/CaO2/HCO3- > O3/CaO2 > O3. Compared to the sole O3 system, TOC and COD were easier to remove in the O3/CaO2/HCO3- system. Based on DFT and LC-MS, active species dominant in the degradation pathways of OTC were proposed. Then, an evaluation of the toxic changes in intermediates during OTC degradation was carried out. The feasibility of O3/CaO2/HCO3- for the treatment of other substances, such as bisphenol A, tetracycline, and actual wastewater, was investigated. Finally, the energy efficiency of the O3/CaO2/HCO3- system was calculated and compared with other mainstream processes of OTC degradation. The O3/CaO2/HCO3- system may be considered as an efficient and economical approach for antibiotic destruction.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/pharmacology , Water , Tetracycline
13.
Environ Sci Pollut Res Int ; 31(14): 21224-21234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38388973

ABSTRACT

Sintering and elutriation are two main problems of the calcium looping process for high-temperature CO2 capture. In the process of CO2 capture, the operation temperature is generally higher than the Taman temperature, resulting in the agglomeration and sintering of the sorbents. The traditional sorbent powers need to be granulated for practical application in a circulating fluidized bed to avoid elutriation. By using a new agar-assisted technology to granulate CaO powder incorporated with Mg, Y, and Ce inert supports, the problems of sintering and elutriation can be mitigated within one step. The incorporated inert supports are uniformly dispersed in the CaO/CaCO3 particles as an inert scaffold, and the inert scaffold is used as a skeleton to resist sintering, alleviate its agglomeration phenomenon, and keep the specific surface area to a certain extent. The Ce-incorporated CaO pellets have been proven to exhibit the best carbonation conversion and sorption capacity. The sorption capacity of 10% CeO2-incorporated CaO pellets reached 0.574 g CO2/g sorbent, more than 43% higher than that of the pure CaO pellets. In addition, the effects of the solid-liquid ratio during the preparation stage on CO2 performance were also investigated, demonstrating that a solid-liquid ratio of 1:5 was the optimal ratio to produce satisfying sorbents. The mitigated sintering and achieved spherical CaO pellets greatly promote the practical application of the calcium looping process for CO2 capture.


Subject(s)
Carbon Dioxide , Oxides , Calcium , Calcium Compounds , Temperature
14.
Environ Sci Pollut Res Int ; 31(7): 11321-11333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38217813

ABSTRACT

A large amount of open-dumped electrolytic manganese residue (EMR) has posed a severe threat to the ecosystem and public health due to the leaching of ammonia (NH4+) and manganese (Mn). In this study, CaO addition coupled with low-temperature roasting was applied for the treatment of EMR. The effects of roasting temperature, roasting time, CaO-EMR mass ratio and solid-liquid ratio were investigated. The most cost-effective and practically viable condition was explored through response surface methodology. At a CaO: EMR ratio of 1:16.7, after roasting at 187 °C for 60 min, the leaching concentrations of NH4+ and Mn dropped to 10.18 mg/L and 1.05 mg/L, respectively, below their discharge standards. In addition, the magnesium hazard (MH) of EMR, which was often neglected, was studied. After treatment, the MH of the EMR leachate was reduced from 60 to 37. Mechanism analysis reveals that roasting can promote NH4+ to escape as NH3 and convert dihydrate gypsum to hemihydrate gypsum. Mn2+ and Mg2+ were mainly solidified as MnO2 and Mg(OH)2, respectively. This study proposes an efficient and low-cost approach for the treatment of EMR and provides valuable information for its practical application.


Subject(s)
Ammonia , Manganese , Manganese/chemistry , Ammonia/analysis , Magnesium , Manganese Compounds/chemistry , Calcium Sulfate , Temperature , Ecosystem , Oxides/chemistry , Electrolytes/chemistry
15.
Comb Chem High Throughput Screen ; 27(1): 90-100, 2024.
Article in English | MEDLINE | ID: mdl-37190798

ABSTRACT

INTRODUCTION: Fu-Fang-Jin-Qian-Cao is a Chinese herbal preparation used to treat urinary calculi. Fu-Fang-Jin-Qian-Cao can protect renal tubular epithelial cells from calcium oxalateinduced renal injury by inhibiting ROS-mediated autopathy. The mechanism still needs further exploration. Metabonomics is a new subject; the combination of metabolomics and network pharmacology can find pathways for drugs to act on targets more efficiently. METHODS: Comprehensive metabolomics and network pharmacology to study the mechanism of Fu-Fang-Jin-Qian-Cao inhibiting autophagy in calcium oxalate-induced renal injury. Based on UHPLC-Q-TOF-MS, combined with biochemical analysis, a mice model of Calcium oxalateinduced renal injury was established to study the therapeutic effect of Fu-Fang-Jin-Qian-Cao. Based on the network pharmacology, the target signaling pathway and the protective effect of Fu- Fang-Jin-Qian-Cao on Calcium oxalate-induced renal injury by inhibiting autophagy were explored. Autophagy-related proteins LC3-II, BECN1, ATG5, and ATG7 were studied by immunohistochemistry. RESULTS: Combining network pharmacology and metabolomics, 50 differential metabolites and 2482 targets related to these metabolites were found. Subsequently, the targets enriched in PI3KAkt, MAPK and Ras signaling pathways. LC3-II, BECN1, ATG5 and ATG7 were up-regulated in Calcium oxalate-induced renal injury. All of them could be reversed after the Fu-Fang-Jin-Qian- Cao treatment. CONCLUSIONS: Fu-Fang-Jin-Qian-Cao can reverse ROS-induced activation of the MAPK signaling pathway and inhibition of the PI3K-Akt signaling pathway, thereby reducing autophagy damage of renal tubular epithelial cells in Calcium oxalate-induced renal injury.


Subject(s)
Calcium Oxalate , Drugs, Chinese Herbal , Mice , Animals , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , Calcium/metabolism , Chromatography, High Pressure Liquid , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Kidney/metabolism , Autophagy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/metabolism
16.
Chemosphere ; 349: 140955, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104737

ABSTRACT

The activation of peroxymonosulfate (PMS) has gained significant interest in the removal of organic pollutants. However, traditional methods usually suffer from drawbacks such as secondary contamination and high energy requirements. In this study, we propose a green and cost-effective approach utilizing calcium oxide (CaO) to activate PMS, aiming to construct a simple and reliable PMS based advanced oxidation processes (AOPs). The proposed CaO/PMS system achieved fast degradation of methylene blue (MB), where the degradation rate of CaO/PMS system (0.24 min-1) was nearly 2.67 times that of PMS alone (0.09 min-1). Under the optimized condition, CaO/PMS system exhibited remarkable durability against pH changes, co-exists ions or organic matters. Furthermore, singlet oxygen (1O2) was identified as the dominant reactive oxygen species by electron paramagnetic resonance (EPR) and quenching tests. Accordingly, the degradation pathways of MB are proposed by combing the results of LC/MS analysis and density functional theory (DFT) calculations, and the predicted ecotoxicity of the generated byproducts evaluated by EOCSAR could provide systematic insights into the fates and environmental risks of MB. Overall, the study provides an eco-friendly and effective strategy for treating dyeing wastewater, which should shed light on the application of PMS based AOPs.


Subject(s)
Methylene Blue , Peroxides , Calcium Compounds
17.
J Ethnopharmacol ; 323: 117662, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38160866

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is a chronic inflammation and relapsing disease that affected approximately 100 million individuals worldwide. In previous clinical study, it was observed that the topical application of Si Cao Formula (SCF) ameliorated psoriasis skin lesions and reduced the recurrence rate of patients over a period of three months. However, the precise mechanism remains unclear. AIM OF THE STUDY: The objective of this study was to assess the effectiveness and safety of SCF in patients diagnosed with psoriasis and explore the molecular mechanisms that contribute to SCF's therapeutic efficacy in psoriasis treatment. MATERIALS AND METHODS: A randomized, controlled, and pilot clinical study was performed. This study assessed 30 individuals diagnosed with mild to moderate plaque psoriasis. 15 of them underwent local SCF treatment, the others received calcipotriol intervention. The outcome measure focused on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and recurrence rate. In addition, IMQ-induced psoriasis-like mice model were used to assess the impact of SCF on ameliorating epidermal hyperplasia, suppressing angiogenesis, and modulating immune response. Furthermore, we performed bioinformatics analysis on transcriptome data obtained from skin lesions of mice model. This analysis allowed us to identify the targets and signaling pathways associated with the action of SCF. Subsequently, we conducted experimental validation to confirm the core targets. RESULTS: Our clinical pilot study demonstrated that SCF could ameliorate skin lesions in psoriasis patients with comparable efficacy of calcipotriol in drop of PASI and DLQI scores. SCF exhibited a significantly reduced recurrence rate within 12 weeks (33.3%). Liquid Chromatography Mass Spectrometry (LC-MS) identified 41 active constituents of SCF (26 cations and 15 anions). Animal experiments showed SCF ameliorates the skin lesions of IMQ-induced psoriasis like mice model and suppresses epidermal hyperkeratosis and angiogenesis. There were 845 up-regulated and 764 down-regulated DEGs between IMQ and IMQ + SCF groups. GO analysis revealed that DEGs were linked to keratinization, keratinocyte differentiation, organic acid transport epidermal cell differentiation, and carboxylic acid transport interferon-gamma production. KEGG pathway analysis showed that SCF may play a vital part through IL-17 and JAK/STAT signaling pathway. In addition, SCF could reduce the number of positive cells expressing PCNA, CD31, pSTAT3, CD3, and F4/80 within the epidermis of psoriatic lesions, as well as the expression of Il-17a and Stat3 in IMQ-induced psoriasis mice. CONCLUSIONS: Our research suggests that SCF serves as a reliable and efficient local approach for preventing and treating psoriasis. The discovery of plausible molecular mechanisms and therapeutic targets associated with SCF may support its broad implementation in clinical settings.


Subject(s)
Neoplasm Recurrence, Local , Psoriasis , Humans , Animals , Mice , Pilot Projects , Imiquimod , Psoriasis/pathology , Inflammation/drug therapy , Disease Models, Animal , Skin/pathology , Mice, Inbred BALB C
18.
Vet. zootec ; 31: 1-5, 2024. ilus, tab
Article in Portuguese | LILACS, VETINDEX | ID: biblio-1552935

ABSTRACT

O presente relato de caso avaliou o meloxicam solução oral spray com o sistema de absorção transmucosa no tratamento de um cão tripedal acometido por osteoartrose em joelho e coluna. Além da avaliação ortopédica, foram realizados questionários de avaliação de dor, baropodometria, termografia e monitoramento de atividade.


The present case report evaluated the meloxicam oral solution spray with the transmucosal absorption system in the treatment of a three-legged dog affected by osteoarthritis in the knee and spine. In addition to the orthopedic evaluation, assessments of pain, baropodometry, thermography, and activity monitoring were carried out.


El presente informe de caso evaluó el spray de solución oral de meloxicam con el sistema de absorción transmucosa en el tratamiento de un perro de tres patas afectado por osteoartritis en la rodilla y columna. Además de la evaluación ortopédica, se realizaron cuestionarios de evaluación del dolor, baropodometría, termografía y monitoreo de la actividad.


Subject(s)
Animals , Dogs , Osteoarthritis/therapy , Meloxicam/administration & dosage , Pain Measurement/veterinary , Joint Diseases/veterinary
19.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067587

ABSTRACT

The co-gasification of biomass and coal is helpful for achieving the clean and efficient utilization of phosphorus-rich biomass. A large number of alkali and alkaline earth metals (AAEMs) present in the ash system of coal (or biomass) cause varying degrees of ash, slagging, and corrosion problems in the entrained flow gasifier. Meanwhile, phosphorus is present in the slag in the form of PO43-, which has a strong affinity for AAEMs (especially for Ca2+) to produce minerals dominated by calcium phosphates or alkaline Ca-phosphate, effectively mitigating the aforementioned problems. To investigate the changing behavior of the slag flow temperature (FT) under different CaO/P2O5 ratios, 72 synthetic ashes with varying CaO/P2O5 ratios at different Si/Al contents and compositions were prepared, and their ash fusion temperatures were tested. The effects of different CaO/P2O5 ratios on the FT were analyzed using FactSage thermodynamic simulation. A model for predicting slag FT at different CaO/P2O5 ratios was constructed on the basis of the average molar ionic potential (Ia) method and used to predict data reported from 19 mixed ashes in the literature. The results showed that Ia and FT gradually increased with a decreasing CaO/P2O5 ratio, and the main mineral types shifted from anorthite → mullite → berlinite, which reasonably explained the decrease in ash fusion temperatures in the mixed ash. The established model showed good adaptability to the prediction of 19 actual coal ash FTs in the literature; the deviation of the prediction was in the range of 40 °C. The model proposed between FT and Ia based on the different CaO/P2O5 ratios can be used to predict the low-rank coal and phosphorus-rich biomass and their mixed ashes.

20.
Molecules ; 28(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38138591

ABSTRACT

The presence of calcium-containing molten salts in the electrolysis of oxides for metal production can lead to the formation of CaO and, subsequently, the generation of intermediate products, affecting the reduction of metals. To investigate the impact of CaO on the reduction process, experiments were conducted using a Fe2O3-CaO cathode and a graphite anode in a NaCl-CaCl2 molten salt electrolyte at 800 °C. The electrochemical reduction kinetics of the intermediate product Ca2Fe2O5 were studied using cyclic voltammetry and I-t curve analysis. The phase composition and morphology of the electrolysis products were analyzed using XRD, SEM-EDS, and XPS. The experimental results demonstrate that upon addition of CaO to the Fe2O3 cathode, Ca2Fe2O5 is formed instantly in the molten salt upon the application of an electrical current. Research conducted at different voltages, combined with electrochemical analysis, indicates that the reduction steps of Ca2Fe2O5 in the NaCl-CaCl2 molten salt are as follows: Ca2Fe2O5 ⟶ Fe3O4 ⟶ FeO ⟶ Fe. The presence of CaO accelerates the electrochemical reduction rate, promoting the formation of Fe. At 0.6 V and after 600 min of electrolysis, all of the Ca2Fe2O5 is converted into Fe, coexisting with CaCO3. With an increase in the electrolysis voltage, the electrolysis product Fe particles visibly grow larger, exhibiting pronounced agglomeration effects. Under the conditions of a 1 V voltage, a study was conducted to investigate the influence of time on the reduction process of Ca2Fe2O5. Gradually, it resulted in the formation of CaFe3O5, CaFe5O7, FeO, and metallic Fe. With an increased driving force, one gram of Fe2O3-CaO mixed oxide can completely turn into metal Fe by electrolysis for 300 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...