Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.620
Filter
1.
Microbiol Spectr ; : e0038624, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832776

ABSTRACT

Rapid detection of carbapenemase-producing Enterobacteriaceae (CPE) is urgently needed to prevent their spread in healthcare settings. Here, we have evaluated the performance of the phenotypic methods for detection of carbapenemase production directly from bacterial cultures. A total of 99 clinical and rectal Enterobacteriaceae isolates were included (81 carrying known carbapenemase-encoding genes and 18 without carbapenemase production). All isolates were subjected to the five phenotypic tests including in-house Carba NP (iCarba NP), modified-Carba NP, E-Test MBL, modified Hodge test (MHT), and commercial combination disk test. Test results were read at different time points for iCarba NP and modified-Carba (1 min, 5 min, 15 min, 1 h and 2 h). The sensitivity and specificity of the iCarba NP were 78.87% and 100%, respectively, whereas those of the modified-Carba NP test were 95.06% and 94.44%, respectively. False-negative results were detected in four OXA-48 isolates with the use of modified-Carba NP, whereas one non-carbapenemase isolate had false-positive results. The sensitivity/specificity was 91.30%/100% and 80.25%/83.33% for the E-Test MBL and MHT, respectively. The sensitivity and specificity of the aminophenylboronic acid synergy test were 100% and 97.94%, respectively, whereas those of the dipicolinic acid synergy test were 82.61% and 96.23%, respectively. Rapid, simple, and reliable methods are needed for laboratory detection of CPE isolates to improve the detection and surveillance of these clinically relevant pathogens in an epidemiological context. We conclude that the modified-Carba NP test can be one of the reliable tests for the prediction of carbapenemase-producing bacteria.IMPORTANCEThe emergence of carbapenem resistance among Gram-negative bacteria is a serious global health threat. Here, we investigate the performance of the five phenotypic assays against carbapenemase-producing and carbapenemase-non-producing Enterobacteriaceae. Accurate and rapid detection of CPE isolates is critically required for clinical management and treatment of infections caused by these organisms. Among the five evaluated phenotypic tests, the mCNP test presented the highest sensitivity (95.06%) and, therefore, can be considered the best test to be used as a screening phenotypic methodology.

2.
Int J Food Microbiol ; 420: 110765, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38838541

ABSTRACT

Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.

3.
Infection ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700659

ABSTRACT

PURPOSE: The aim was to analyse the clinical and economic impact of carbapenemase-producing Enterobacterales (CPE) infections. METHODS: Case-control study. Adult patients with CPE infections were considered cases, while those with non-CPE infections were controls. Matching criteria were age (± 5 years), sex, source of infection and microorganism (ratio 1:2). Primary outcome was 30-day mortality. Secondary outcomes were 90-day mortality, clinical failure, hospitalisation costs and resource consumption. RESULTS: 246 patients (82 cases and 164 controls) were included. Klebsiella pneumoniae OXA-48 was the most common microorganism causing CPE infections. CPE cases had more prior comorbidities (p = 0.007), septic shock (p = 0.003), and were more likely to receive inappropriate empirical and definitive antibiotic treatment (both p < 0.001). Multivariate analysis identified septic shock and inappropriate empirical treatment as independent predictors for 7-day and end-of-treatment clinical failure, whereas Charlson Index and septic shock were associated with 30- and 90-day mortality. CPE infection was independently associated with early clinical failure (OR 2.18, 95% CI, 1.03-4.59), but not with end-of-treatment clinical failure or 30- or 90-day mortality. In terms of resource consumption, hospitalisation costs for CPE were double those of the non-CPE group. CPE cases had longer hospital stay (p < 0.001), required more long-term care facilities (p < 0.001) and outpatient parenteral antibiotic therapy (p = 0.007). CONCLUSIONS: The CPE group was associated with worse clinical outcomes, but this was mainly due to a higher comorbidity burden, more severe illness, and more frequent inappropriate antibiotic treatment rather than resistance patterns as such. However, the CPE group consumed more healthcare resources and incurred higher costs.

4.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702700

ABSTRACT

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
5.
Environ Res ; 255: 119166, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759772

ABSTRACT

Pseudomonas aeruginosa belong to the special pathogen group capable of causing serious infections, with high mortality rates. The aim of this study was to describe the antibiotic resistance and genomic characteristics of Pseudomonas aeruginosa belonging to international high-risk clone ST235 (GPAE0131 isolate), obtained from hospital wastewater. P. aeruginosa GPAE0131 was isolated from ward tertiary hospital in Brazil and the antibiotic resistance profile was determined by the disc-diffusion method. Genomic characteristics related to antibiotic resistance and virulence factors were evaluated by genomic DNA sequencing on the Illumina MiSeq platform and bioinformatic analysis. GPAE0131 isolate showed resistance to piperacillin-tazobactam, cefepime, ceftazidime, imipenem, meropenem, ciprofloxacin, levofloxacin and tobramycin. Resistome comprehend of resistance genes to ß-lactams (blaVIM-2, blaOXA-4, blaOXA-488, blaPDC-35), aminoglycosides (aph(3')-IIb, aac(6')-IIc, aac(6')-Ib9, aadA1), fosfomycin (fosA), chloramphenicol (catB7) and sulfonamides (sul1). Genome comparisons evidence insertion of blaVIM-2 and blaOXA-4 genes. GPAE0131 isolate was predicted to be pathogenic to humans and several virulence factors were found, including encoding gene for ExoU and exotoxin A. All of these features into a pathogenic international high-risk clone (ST235), classified as critical priority, stands out as public health concern due to the widespread dispersal of human pathogens through wastewater. It is suggested that mitigating measures be implemented, such as the treatment of hospital sewage and the addition of tertiary treatment, to prevent the escape of pathogens at this level into the environment.

6.
Infect Drug Resist ; 17: 1633-1641, 2024.
Article in English | MEDLINE | ID: mdl-38707988

ABSTRACT

Background: Clinical isolates of Acinetobacter species in South Korea are continuously exhibiting high rates of antimicrobial resistance to carbapenems, indicating that there are public health concerns among both healthcare-associated infections and community-associated infections. The aim of this study was to describe the prevalence and characteristics of carbapenem-resistant Acinetobacter isolates originating from community hospitals. Materials and Methods: A total of 817 non-duplicated Acinetobacter species were isolated from December 2022 to July 2023 at long-term care facilities and general hospitals in 16 regions geographically distributed throughout South Korea. Bacterial identification and antimicrobial susceptibility testing were performed using the VITEK-2 system. The bacteria were identified as Acinetobacter baumannii by blaOXA-51 PCR and as non-baumannii Acinetobacter species by rpoB sequence analysis. The carbapenem resistance genes (OXA-23, OXA-48, OXA-58, IMP, VIM, NDM, GES, and KPC) were identified via PCR and sequencing. The genetic relatedness of carbapenem-resistant A. baumannii (CRAB) isolates was assessed by multilocus sequence typing. Results: A total of 659 A. baumannii and 158 non-baumannii Acinetobacter isolates, comprising 19 different species, were identified in all 16 regions. The carbapenem resistance rate was 87.4% (n=576) for the A. baumannii isolates, and all the strains produced blaOXA-23. For non-baumannii Acinetobacter, the rate of carbapenem resistance was 8.9% (n=14); this resistance was primarily caused by blaOXA-23 (n=9), followed by blaNDM-1 (n=3) and blaVIM-2 (n=2). Of the 576 CRAB isolates, clonal complex 92 (CC92) was the predominant genotypes, followed by sequence type 229 (ST229), ST373, ST397, ST447, and ST620. Conclusion: Our results showed the distribution of Acinetobacter species and showed that CC92 CRAB clinical isolates with widespread production of blaOXA-23 were predominant in community hospitals. Our findings suggest that there is a need for urgent and effective methods to reduce carbapenem resistance in A. baumannii in South Korea.

7.
Article in English | MEDLINE | ID: mdl-38723713

ABSTRACT

OBJECTIVES: The aim of this study is to characterize an NDM-1-producing Acinetobacter seifertii isolates from a patient in South Korea. METHODS: Antibiotic susceptibility testing and genotyping using multigene sequencing were performed and whole plasmid sequences were determined. RESULTS: The genotype of A. seifertii was ST1899, and was resistant to ceftazidime, trimethoprim-sulfamethoxazole, and piperacillin-tazobactam, in addition to carbapenem. blaNDM-1 was surrounded by ISAba125 insertion sequence within the structure of Tn125 in the 47 kb-sized plasmid. The plasmid exhibited a structure similar to that of other plasmids of diverse Acinetobacter species found worldwide. Transconjugation and growth curve indicated that the plasmid was adapted to A. seifertii rather than other closely related Acinetobacter species. CONCLUSION: Acquisition of the carbapenem resistance by horizontal transfer of the blaNDM-1-carrying plasmid from another Acinetobacter species with no growth defect.

8.
J Hosp Infect ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740300

ABSTRACT

BACKGROUND: The healthcare water environment is a potential reservoir of carbapenem-resistant organisms (CROs). Here, we report the role of the water environment as a reservoir and the infection control measures applied to suppress a prolonged outbreak of Klebsiella pneumoniae carbapenemase-producing Serratia marcescens (KPC-SM) in two intensive care units (ICUs). METHODS: The outbreak occurred in the ICUs of a tertiary hospital from October 2020 to July 2021. Comprehensive patient contact tracing and environmental assessments were conducted, and a case-control study was performed to identify factors associated with the acquisition of KPC-SM. Associations among isolates were assessed via pulsed-field gel electrophoresis (PFGE). Antibiotic usage was analyzed. . RESULTS: The outbreak consisted of two waves involving a total of 30 patients with KPC-SM. Multiple environmental cultures identified KPC-SM in a sink, a dirty utility room, and a communal bathroom shared by the ICUs, together with the waste bucket of a continuous renal replacement therapy (CRRT) system. The genetic similarity of the KPC-SM isolates from patients and the environment was confirmed by PFGE. A retrospective review of 30 cases identified that the use of CRRT and antibiotics were associated with acquisition of KPC-SM (p < 0.05). There was a continuous increase in the use of carbapenems; notably, the use of colistin has increased since 2019. CONCLUSION: Our study demonstrates that CRRT systems, along with other hospital water environments, are significant potential sources of resistant microorganisms, underscoring the necessity of enhancing infection control practices in these areas.

9.
J Chemother ; : 1-5, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741515

ABSTRACT

Two Enterobacter hormaechei isolates harbouring three carbapenemase genes each, were isolated from two patients from different ICUs at University Hospital Centre Zagreb, Croatia, which is to our knowledge, the first report of triple carbapenemase (blaVIM-2, blaNDM-1, and blaOXA-48) co-existence in E. hormachei strains and also among Enterobacterales members in Croatia. Antimicrobial susceptibility testing showed susceptibility only to colistin and amikacin. The production of carbapenemases was phenotypically tested by immunochromatographic assay and confirmed by PCR. Detailed analysis by Whole Genome Sequencing (WGS) of short reads by Illumina and long reads by Oxford Nanopore Technologies (ONT) was additionally performed and showed that both isolates belonged to ST200. They were separated by 98 Single Nucleotide Polymorphisms (SNPs) having variations in the number of blaVIM-2 genes on the chromosome, the number of blaNDM-1 genes on the plasmid, non-identical blaNDM-1 plasmids, different plasmid content in general, and only one isolate carried a 94 kb prophage.

10.
Article in English | MEDLINE | ID: mdl-38750653

ABSTRACT

AIMS: To estimate the prevalence of carbapenemase-producing Enterobacterales (CPE) carriage among pets using faecal specimens submitted to veterinary diagnostic laboratories throughout the US. A secondary aim was to employ whole-genome sequencing (WGS) to characterize isolates of CPE from companion animals and compare them to publicly available CPE genomes. METHODS AND RESULTS: To estimate the prevalence of CPE in companion animals in the USA, a multicenter surveillance study including 8 different veterinary diagnostic laboratories from across the USA was conducted. Briefly, remnant faecal specimens from dogs and cats were screened using two selective agar plates (CHROMID Carba and MacConkey with 1 mg/L cefotaxime and 0.125 mg/L meropenem) and presumptive CPE isolates screened by the modified carbapenemase inactivation method for carbapenemase production. A total of 2393 specimens were screened and yielded 196 isolates for carbapenemase screening. A total of 5 isolates from 4 dogs and 1 cat at 3 different veterinary diagnostic laboratories were confirmed to produce a carbapenemase (0.21%). Whole-genome sequencing (WGS) revealed two E. coli (ST167) isolates that both produced an NDM-5 carbapenemase, two Enterobacter hormaechei (ST171) isolates that produced an NDM-5 carbapenemase and a KPC-4 carbapenemase respectively and one Klebsiella oxytoca (ST199) that produced an Oxa-48-type carbapenemase. Both E. coli isolates were found to be within at least 22 SNPs of previously characterized canine and human CPE isolates. CONCLUSIONS: This study demonstrates that the prevalence of CPE among companion animals is relatively low (0.21%) but that given the genetic relatedness of animal isolates to human isolates, additional surveillance is needed.

11.
Infect Prev Pract ; 6(2): 100366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38765915

ABSTRACT

Background: The presence of carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) around the world is increasing, particularly in healthcare settings. Surveillance testing for plasmid-mediated carbapenemase genes is necessary to tracking CP-CRE infections. Aim: In the state of Ohio, surveillance of carbapenem-resistant Enterobacterales (CRE) began in 2018, and to the authors' knowledge data on these cases has not been published to date. This study analyzed data on CRE from a large teaching hospital in Ohio, and by the Ohio Department of Health Laboratory (ODHL). Methods: Carbapenemase production was detected using mCIM, and plasmid-mediated carbapenemase genes were detected using rtPCR. Data was collected on 344 standard-of-care isolates from a large teaching hospital in Ohio, including data collected from chart review. Deidentified surveillance data on 4,391 CRE isolates was provided by the ODHL. Statistical analysis was performed using binary logistic regression. Findings: While KPC was the most common carbapenemase gene (n=1590), NDM (n=98), VIM (n=10), IMP (n=39) and OXA-48 (n=35) were also detected in the isolates studied. Klebsiella pneumoniae and Enterobacter cloacae were the most common CRE, and carbapenemase genes were most commonly detected in K. pneumoniae. Inpatient hospital stays and long-term care were associated with CP-CRE and were more common in women. Conclusion: Surveillance data shows that CP-CRE are present in Ohio, most commonly in Klebsiella pneumoniae. A better understanding of the prevalence of CRE, plasmid-mediated carbapenemase genes present, and the populations affected are important when tracking the spread of disease. Further study and surveillance of carbapenem-resistant organisms can provide a better understanding of their prevalence in the state.

12.
Microb Drug Resist ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770796

ABSTRACT

The emergence of carbapenemase-producing Klebsiella pneumoniae poses a substantial risk to public health. It is essential to comprehend the influence of carbapenemase on the virulence characteristics of K. pneumoniae in order to devise successful strategies for combating these infections. In this study, we explored the distribution disparity of virulence determinants between carbapenemase-producing (CP-Kp, n = 52) and carbapenemase-nonproducing (CN-Kp, n = 43) isolates. The presence of carbapenemases was detected via the modified carbapenem inactivation method and confirmed by PCR. The New Delhi metallo-ß-lactamase (blaNDM) and Oxacillinase-48-like (blaOXA-48-like) genes were the most prevalent (94.23% and 76.92%, respectively) in CP-Kp isolates. Coexistence of blaNDM and blaOXA-48-like was observed in 71.15% of isolates, whereas 5.77% coharbored blaNDM and blaKPC. PCR analysis revealed the presence of several virulence genes, including adhesins (fimH, 92.63%, mrkD, 97.89%), capsule-associated virulence (uge, 90.53%), the K2 capsule serotype (k2, 6.32%), the iron acquisition system (kfu, 23.16%), and the regulator of mucoid phenotype (rmpA, 28.42%). A significantly higher prevalence of rmpA was detected in the CP-Kp compared with the CN-Kp (24/52 vs. 3/43, p < 0.0001), indicating a potential association between rmpA and carbapenemase acquisition. In addition, the majority of rmpA (22/24) positive isolates in the CP-Kp isolates coharbored blaNDM and either blaOXA-48-like or blaKPC.

13.
Antimicrob Agents Chemother ; : e0023624, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780262

ABSTRACT

CERTAIN-1 was a Phase 3, double-blind, randomized, parallel group study of the efficacy and safety of cefepime-taniborbactam versus meropenem in the treatment of adults with complicated urinary tract infection (cUTI), including acute pyelonephritis. We determined susceptibility of Enterobacterales and Pseudomonas aeruginosa baseline pathogens to cefepime-taniborbactam and comparators and characterized ß-lactam resistance mechanisms. Microbiologic response and clinical response were assessed in patient subsets defined by baseline pathogens that were of cefepime-, multidrug-, or carbapenem-resistant phenotype or that carried ß-lactamase genes. Among Enterobacterales baseline pathogens, 26.8%, 4.1%, and 3.0% carried genes for extended-spectrum ß-lactamases (ESBLs), AmpC, and carbapenemases, respectively. Within each treatment group, while composite success rates at Test of Cure in resistant subsets by pathogen species were similar to those by pathogen overall, composite success rates in meropenem patients were numerically lower for cefepime-resistant Escherichia coli (9/19; 47.4%) and ESBL E. coli (13/25; 52.0%) compared with E. coli overall (62/100; 62.0%). Cefepime-taniborbactam achieved composite success in 7/8 (87.5%) patients with carbapenem-resistant Enterobacterales and 8/9 (88.9%) patients with Enterobacterales with a carbapenemase gene (5 OXA-48-group; 2 KPC-3; 2 NDM-1). Cefepime-taniborbactam also achieved composite success in 8/16 (50.0%) patients and clinical success in 13/16 (81.3%) patients with P. aeruginosa; corresponding rates were 4/7 (57.1%) and 6/7 (85.7%) for meropenem. Cefepime-taniborbactam demonstrated efficacy in adult cUTI patients with cefepime-, multidrug-, and carbapenem-resistant pathogens including pathogens with ESBL, AmpC, and carbapenemase genes. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT03840148.

14.
Sci Total Environ ; 931: 172873, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692330

ABSTRACT

Carbapenem resistance's global proliferation poses a significant public health challenge. The primary resistance mechanism is carbapenemase production. In this study, we discovered a novel carbapenemase, RATA, located on the chromosome of Riemerella anatipestifer isolates. This enzyme shares ≤52 % amino acid sequence identity with other known ß-lactamases. Antimicrobial susceptibility tests and kinetic assays demonstrated that RATA could hydrolyze not only penicillins and extended-spectrum cephalosporins but also monobactams, cephamycins, and carbapenems. Furthermore, its activity was readily inhibited by ß-lactamase inhibitors. Bioinformatic analysis revealed 46 blaRATA-like genes encoding 27 variants in the NCBI database, involving 21 different species, including pathogens, host-associated bacteria, and environmental isolates. Notably, blaRATA-positive strains were globally distributed and primarily collected from marine environments. Concurrently, taxonomic analysis and GC content analysis indicated that blaRATA orthologue genes were predominantly located on the chromosomes of Flavobacteriaceae and shared a similar GC content as Flavobacteriaceae. Although no explicit mobile genetic elements were identified by genetic environment analysis, blaRATA-2 possessed the ability of horizontal transfer in R. anatipestifer via natural transformation. This work's data suggest that RATA is a new chromosome-encoded class A carbapenemase, and Flavobacteriaceae from marine environments could be the primary reservoir of the blaRATA gene.


Subject(s)
Bacterial Proteins , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Carbapenems/pharmacology
15.
Infect Drug Resist ; 17: 1699-1728, 2024.
Article in English | MEDLINE | ID: mdl-38715963

ABSTRACT

Background: The World Health Organization (WHO) has classified carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa (P. aeruginosa), and Acinetobacter baumannii (A. baumannii) as high-priority pathogens, and carbapenem-resistant bacteria (CRB) have been reported to spread between humans, animals, and the environment. Objective: This study aimed to conduct a systematic review of carbapenem resistance in animals, foods, and the environment on the African continent and to provide recommendations and perspectives for better prevention and control of carbapenem resistance in Africa. Results: A total of 137 research articles collected from 2009 to 2023 were selected for this review, including articles reporting carbapenem-resistant bacteria in animals (81/137; 59.1%), the environment (66/137; 48.2%), and foods (26/137; 19%). Carbapenem-resistant bacterial species belonged to 31 genera and 17 families, including mainly Escherichia spp. (68/127; 53.5%); Klebsiella spp. (45/127; 35.4%); Pseudomonas spp. (20/127; 15.7%), Enterobacter spp. (19/127; 15%) and Acinetobacter spp. (15/127; 11.8%). The prevalence of CRBs by country ranged from 1.1% to 48.5%, and the pooled prevalence of CRBs isolated from animal-environment-food in Africa was 19.1% (2804/14,684; Standard Deviation = 15). Twenty carbapenemase families belonging to A, B, C, and D Ambler classes were reported, including mainly carbapenemase genes from blaOXA (44/84; 52.4%), blaNDM (34/84; 40.5%), blaSHV (23/84; 27.4%), blaKPC (22/84; 26.2%), blaVIM (19/84; 22.6%), and blaIMP (12/84; 14.3%) families. The reported mobile genetic elements (MGE) carrying carbapenemase-encoding genes included plasmids (16/19; 84.2%), integrons (3/19; 15.8%), transposons (3/19; 15.8%), and insertion sequences (2/19; 10.5%). blaOXA-48 was often carried by (60kb-65kb) IncL/M-type pOXA-48 plasmids, while blaNDM-5 was often carried by (45-50kb) IncX-type plasmids. Moreover, 25 articles investigated and reported virulent and hypervirulent CRBs that carried multiple virulence factors. Conclusion: Animal-environment-food ecosystems would constitute reservoirs of CRBs involved in human infections. The One Health approach and constant collaboration between governments are necessary to drastically reduce the mortality rates linked to antimicrobial resistance.

16.
Article in English | MEDLINE | ID: mdl-38718417

ABSTRACT

One of the mechanisms responsible for antibiotic resistance in Klebsiella pneumoniae is the enzymes produced by the bacteria; another important mechanism is the ability to form biofilm. In this study, antibiotic resistance, genes associated with virulence, and biofilm-forming properties of K. pneumoniae strains were investigated. A total of 100 K. pneumoniae isolates were obtained from different clinical samples identified by Matrix-Assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry. Antimicrobial susceptibility testing was performed with the Phoenix 100 apparatus. The biofilm forming properties of strains were determined by the microtiter plate method. For molecular analysis, genes encoding the carbapenemase enzyme (blaOXA-48, blaNDM-1, blaIMP, and blaVIM) and biofilm-related genes (treC, luxS, mrkA, and wza) were investigated by polymerase chain reaction (PCR). While 76% of clinical isolates were resistant to three or more antimicrobials, 24% were classified as non-multidrug resistant (non-MDR). When biofilm-forming capacities of clinical isolates were tested, it was determined that the resistant-isolates produced 59.2% strong biofilm, and susceptible-isolates produced 12.5% strong biofilm. According to PCR results, carbapenemase genes were determined as follows: blaOXA-48-70%, blaNDM-49%, and blaKPC-19%, blaOXA-48/blaNDM/blaKPC-12%, blaOXA-48/blaNDM-26%, and blaOXA-48/blaKPC-4%. The biofilm-associated genes in bacterial isolates were determined as follows: luxS-98%, treC-94%, mrkA-88%, and wza-15%. In addition, Hierarchical Clustering Tree and Heatmap analysis revealed an association between isolates that lacks resistance genes and isolates lacks biofilm-formation related genes that were included in MDR or non-MDR classes. As a result, biofilm should be considered in the treatment of MDR infections, and therapy should be planned accordingly. In addition, pursuing the data and genes of antibiotic resistance is significant for combating resistance.

17.
J Clin Microbiol ; : e0015424, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809033

ABSTRACT

The increasing use of ceftazidime-avibactam has led to the emergence of a wide range of ceftazidime-avibactam-resistant blaKPC-2 variants. Particularly, the conventional carbapenemase phenotypic assay exhibited a high false-negative rate for KPC-2 variants. In this study, three colloidal gold immunoassays, including the Gold Mountainriver CGI test, Dynamiker CGI test and NG-Test CARBA5, and GeneXpert Carba-R, were used to detect the presence of KPC-2 carbapenemase and its various variants in 42 Klebsiella pneumoniae strains. These strains covered blaKPC-2 (13/42) and 16 other blaKPC-2 variants including blaKPC-12 (1/42), blaKPC-23 (1/42), blaKPC-25 (1/42), blaKPC-33 (6/42), blaKPC-35 (1/42), blaKPC-44 (1/42), blaKPC-71 (1/42), blaKPC-76 (8/42), blaKPC-78 (1/42), blaKPC-79 (1/42), blaKPC-100 (1/42), blaKPC-127 (1/42), blaKPC-128 (1/42), blaKPC-144 (1/42), blaKPC-157 (2/42), and blaKPC-180 (1/42). For KPC-2 strains, all four assays showed 100% negative percentage agreement (NPA) and 100% positive percentage agreement (PPA) with sequencing results. For all 16 KPC-2 variants, GeneXpert Carba-R showed 100% NPA and 100% PPA, and the three colloidal gold immunoassays showed 100% NPA, while the PPAs of the Gold Mountainriver CGI test, Dynamiker CGI test, and NG-Test CARBA5 were 87.5%, 87.5%, and 68.8%, respectively. We also found a correlation between the mutation site in the amino acid of the variants and false-negative results by colloidal gold immunoassays. In conclusion, the GeneXpert Carba-R has been proven to be a reliable method in detecting KPC-2 and its variants, and the colloidal gold immunoassay tests offer a practical and cost-effective approach for their detection. For the sample with a negative result by a colloidal gold immunoassay test but not matching the drug-resistant phenotype, it is recommended to retest using another type of kit or the GeneXpert Carba-R assay, which can significantly improve the accuracy of detection.

18.
Microorganisms ; 12(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38792766

ABSTRACT

Multidrug-resistant (MDR) bacteria have become one of the most important health problems. We aimed to assess whether international travel may facilitate their spread through the colonization of asymptomatic travelers. A cross-sectional study was conducted (November 2018 to February 2022). Pharyngeal and rectal swabs were obtained from long-term travelers and recently arrived migrants from non-European countries, and an epidemiological survey was performed. Colonization by Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) was determined by chromogenic media and MALDI-TOF-MS. Resistance mechanisms were determined by the biochip-based molecular biology technique. Risk factors for colonization were assessed by logistic regression. In total, 122 participants were included: 59 (48.4%) recently arrived migrants and 63 (51.6%) long-term travelers. After their trip, 14 (11.5%) participants-5 (8.5%) migrants and 9 (14.3%) travelers-had rectal colonization by one MDR bacterium. Escherichia coli carrying the extended-spectrum beta-lactamase (ESBL) CTX-M-15 was the most frequent. No participants were colonized by MRSA or carbapenemase-producing Enterobacteriaceae. The only risk factor independently associated with MDR bacterial colonization was previous hospital attention [OR, 95% CI: 10.16 (2.06-50.06)]. The risk of colonization by MDR bacteria among recently arrived migrants and long-term travelers is similar in both groups and independently associated with previous hospital attention.

20.
Antibiotics (Basel) ; 13(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786129

ABSTRACT

The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS: During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS: The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS: The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.

SELECTION OF CITATIONS
SEARCH DETAIL
...