Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters











Publication year range
1.
New Phytol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160672

ABSTRACT

Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short- and long-term adjustments are interdependent, as 'optimal' in the short term depends on traits set in the longer term. An economics framework is used to optimize long-term traits that impact short-term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low-water potentials. Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification. The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.

2.
Biotechnol J ; 19(6): e2400290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900053

ABSTRACT

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.


Subject(s)
Formates , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Formates/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Directed Molecular Evolution , Glyoxylates/metabolism , Gene Editing
3.
Plants (Basel) ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891297

ABSTRACT

Salt stress is one of the major adverse factors affecting plant growth and crop production. Rapeseed is an important oil crop, providing high-quality edible oil for human consumption. This experiment was conducted to investigate the effects of salt stress on the phenotypic traits and physiological processes of rapeseed. The soil salinity was manipulated by setting three different levels: 0 g NaCl kg-1 soil (referred to as S0), 1.5 g NaCl kg-1 soil (referred to as S1), and 3.0 g NaCl kg-1 soil (referred to as S2). In general, the results indicated that the plant height, leaf area, and root neck diameter decreased with an increase in soil salinity. In addition, the biomass of various organs at all growth stages decreased as soil salinity increased from S0 to S2. The increasing soil salinity improved the distribution of biomass in the root and leaf at the seedling and flowering stages, indicating that rapeseed plants subjected to salt stress during the vegetative stage are capable of adapting their growth pattern to sustain their capacity for nutrient and water uptake, as well as leaf photosynthesis. However, as the soil salinity increased, there was a decrease in the distribution of biomass in the pod and seed at the maturity stage, while an increase was observed in the root and stem, suggesting that salt stress inhibited carbohydrate transport into reproductive organs. Moreover, the C and N accumulation at the flowering and maturity stages exhibited a reduction in direct correlation with the increase in soil salinity. High soil salinity resulted in a reduction in the C/N, indicating that salt stress exerted a greater adverse effect on C assimilation compared to N assimilation, leading to an increase in seed protein content and a decrease in oil content. Furthermore, as soil salinity increased from S0 to S2, the activity of superoxide dismutase (SOD) and catalase (CAT) and the content of soluble protein and sugar increased by 58.39%, 33.38%, 15.57%, and 13.88% at the seedling stage, and 38.69%, 22.85%, 12.04%, and 8.26% at the flowering stage, respectively. In summary, this study revealed that salt stress inhibited C and N assimilation, leading to a suppressed phenotype and biomass accumulation. The imbalanced C and N assimilation under salt stress contributed to the alterations in the seed oil and protein content. Rapeseed had a certain degree of salt tolerance by improving antioxidants and osmolytes.

5.
Plant Cell Environ ; 47(9): 3365-3374, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38804248

ABSTRACT

Photorespiration is an essential process related to photosynthesis that is initiated following the oxygenation reaction catalyzed by rubisco, the initial enzyme of the Calvin-Benson-Bassham cycle. This reaction produces an inhibitory intermediate that is recycled back into the Calvin-Benson-Bassham cycle by photorespiration which requires the use of energy and the release of a portion of the carbon as CO2. The energy use and CO2 release of canonical photorespiration form a foundation for biochemical models used to describe and predict leaf carbon exchange and energy use (ATP and NAPDH). The ATP and NADPH demand of canonical photorespiration is thought to be different than that of the Calvin-Benson-Bassham cycle, requiring increased flexibility in the ratio of ATP and NADPH from the light reactions. Photorespiration requires many reactions across the chloroplasts, mitochondria and peroxisomes and involves many intermediates. Growing evidence indicates that these intermediates do not all stay in photorespiration as typically assumed and instead feed into other aspects of metabolism and leave as glycine, serine, and methylene-THF. Here we discuss how alternative flux through and from canonical photorespiration alters the ATP and NADPH requirements of metabolism following rubisco oxygenation using additional derivations of biochemical models of leaf photosynthesis and energetics. Using these new derivations, we determine that the ATP and NADPH demands of photorespiration are highly sensitive to alternative flux in ways that fundamentally changes how photorespiration contributes to the ratio of total ATP and NADPH demand. Specifically, alternative flows of carbon through photorespiration could reduce ATP and NADPH demand ratio to values below what is produced from linear electron transport.


Subject(s)
Carbon , Energy Metabolism , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Photosynthesis/physiology , Carbon/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , NADP/metabolism , Adenosine Triphosphate/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Chloroplasts/metabolism
7.
Plant Cell Environ ; 47(9): 3478-3493, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38589983

ABSTRACT

Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.


Subject(s)
Acclimatization , Droughts , Models, Biological , Photosynthesis , Plant Stomata , Photosynthesis/physiology , Plant Stomata/physiology , Acclimatization/physiology , Water/metabolism , Water/physiology , Carbon/metabolism , Plant Leaves/physiology
8.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479316

ABSTRACT

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Subject(s)
Brassica , Seedlings , Chlorophyll/metabolism , Carbon/metabolism , Fluorescence , Photosynthesis , Chlorophyll A/metabolism , Plant Leaves/metabolism , Brassica/metabolism
9.
Genes Genomics ; 46(4): 423-436, 2024 04.
Article in English | MEDLINE | ID: mdl-38324226

ABSTRACT

BACKGROUND: Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE: To understand the biological function of the GhRCAß2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAß2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS: The bioinformatics tools were used to analyze the sequence features of GhRCAß2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAß2 protein. The expression pattern of the GhRCAß2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS: The full-length CDS of GhRCAß2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAß2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAß2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAß2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA ß-isoform. The GhRCAß2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAß2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAß2 in comparison to the wild-type cotton plants. The GhRCAß2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAß2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAß2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAß2 gene. CONCLUSION: Our findings will establish a basis for further understanding the function of the GhRCAß2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.


Subject(s)
Arabidopsis , Gossypium , Gossypium/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms , Arabidopsis/metabolism
10.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Article in English | MEDLINE | ID: mdl-38294051

ABSTRACT

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Subject(s)
Gossypium , Ribulose-Bisphosphate Carboxylase , Gossypium/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide , Temperature , Photosynthesis/physiology , Plant Leaves/metabolism
11.
Biotechnol Adv ; 70: 108294, 2024.
Article in English | MEDLINE | ID: mdl-38013126

ABSTRACT

Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.


Subject(s)
Carbon Dioxide , Carbon , Carbon/metabolism , Carbon Dioxide/metabolism , Autotrophic Processes , Carbon Cycle , Synthetic Biology
12.
New Phytol ; 241(3): 1361-1372, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984070

ABSTRACT

We present the Fast Assimilation-Temperature Response (FAsTeR) method, a new method for measuring plant assimilation-temperature (AT) response that reduces measurement time and increases data density compared with conventional methods. The FAsTeR method subjects plant leaves to a linearly increasing temperature ramp while taking rapid, nonequilibrium measurements of gas exchange variables. Two postprocessing steps are employed to correct measured assimilation rates for nonequilibrium effects and sensor calibration drift. Results obtained with the new method are compared with those from two conventional stepwise methods. Our new method accurately reproduces results obtained from conventional methods, reduces measurement time by a factor of c. 3.3 (from c. 90 to 27 min), and increases data density by a factor of c. 55 (from c. 10 to c. 550 observations). Simulation results demonstrate that increased data density substantially improves confidence in parameter estimates and drastically reduces the influence of noise. By improving measurement speed and data density, the FAsTeR method enables users to ask fundamentally new kinds of ecological and physiological questions, expediting data collection in short-field campaigns, and improving the representativeness of data across species in the literature.


Subject(s)
Photosynthesis , Plant Leaves , Humans , Temperature , Photosynthesis/physiology , Plant Leaves/physiology , Carbon Dioxide
13.
Sci Total Environ ; 906: 167421, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37774859

ABSTRACT

A comprehensive understanding of carbon assimilation and sequestration in broad-leaved Korean pine forests is crucial for accurately estimating this significant aspect of temperate forests at a regional scale. In this study, we introduced a high-temporal resolution model designed for carbon assimilation insights at the plot scale, focusing on specific parameters such as leaf area dynamics, vertical leaf distribution, photosynthetically active radiation (PAR) fluctuations, and the photosynthetic traits of tree species. The findings reveal that most tree species in broad-leaved Korean pine forests exhibit an inverted U-shaped pattern in leaf area dynamics, with shorter leaf drop periods than leaf expansion events. Leaf distribution varies significantly among different canopy heights, with approximately 80 % of the leaves above 15 m. PAR decreases as canopy height decreases, with PAR at 25 m accounting for about 60 % of the PAR above the canopy. Our framework incorporates a leaf-scale light-response curve and empirical photosynthesis-temperature relationships to estimate forest carbon assimilation on daily and hourly scales accurately. Using the model, we assess the gross primary productivity (GPP), leaf net photosynthetic assimilation (LNPA), and carbon increment (ΔC) of broad-leaved Korean pine forests from 2017 to 2020. The results demonstrate GPP, LNPA, and ΔC values of 21.4 t·ha-1·a-1, 17.4 t·ha-1·a-1, and 4.0 t·ha-1·a-1, respectively. Regarding efficiency, GPP, LNPA, and ΔC per square meter of leaf per year are 179 g, 146 g, and 33 g, respectively. Notably, tree species in the canopy layer of the forest exhibit significantly higher efficiency than those in the understory layer. This research significantly contributes to our understanding of carbon cycling and the responses of forest ecosystems to climate change. Moreover, it provides a practical tool for forest management and the development of carbon sequestration strategies.


Subject(s)
Ecosystem , Pinus , Carbon Sequestration , Forests , Trees/physiology , Photosynthesis , Carbon/analysis , Plant Leaves/chemistry , Republic of Korea
14.
Plants (Basel) ; 12(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005705

ABSTRACT

It has been shown that increased concentrations of zinc oxide nanoparticles (nano-ZnO) in the soil are harmful to plant growth. However, the sensitivity of different wheat cultivars to nano-ZnO stress is still unclear. To detect the physiological response process of wheat varieties with different tolerance to nano-ZnO stress, four wheat cultivars (viz., cv. TS1, ZM18, JM22, and LM6) with different responses to nano-ZnO stress were selected, depending on previous nano-ZnO stress trials with 120 wheat cultivars in China. The results found that nano-ZnO exposure reduced chlorophyll concentrations and photosynthetic electron transport efficiency, along with the depressed carbohydrate metabolism enzyme activities, and limited plant growth. Meanwhile, the genotypic variation in photosynthetic carbon assimilation under nano-ZnO stress was found in wheat plants. Wheat cv. JM22 and LM6 possessed relatively lower Zn concentrations and higher leaf nitrogen per area, less reductions in their net photosynthetic rate, a maximum quantum yield of the PS II (Fv/Fm), electron transport flux per cross-section (ETo/CSm), trapped energy flux per cross-section (TRo/CSm), and total soluble sugar and sucrose concentrations under nano-ZnO stress, showing a better tolerance to nano-ZnO stress than wheat cv. TS1 and ZM18. In addition, the chlorophyll a fluorescence parameters Fv/Fm, ETo/CSm, and TRo/CSm could be used to rapidly screen wheat varieties resistant to nano-ZnO stress. The results here provide a new approach for solving the issues of crop yield decline in regions polluted by heavy metal nanoparticles and promoting the sustainable utilization of farmland with heavy metal pollution.

15.
Plants (Basel) ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836114

ABSTRACT

Polygonatum odoratum (Mill.) Druce possesses widespread medicinal properties; however, the continuous cropping (CC) often leads to a severe consecutive monoculture problem (CMP), ultimately causing a decline in yield and quality. Photosynthesis is the fundamental process for plant growth development. Improving photosynthesis is one of the most promising approaches to increase plant yields. To better understand how P. odoratum leaves undergo photosynthesis in response to CC, this study analyzed the physiochemical indexes and RNA-seq. The physiochemical indexes, such as the content of chlorophyll (chlorophyll a, b, and total chlorophyll), light response curves (LRCs), and photosynthetic parameters (Fv/Fm, Fv/F0, Fm/F0, Piabs, ABS/RC, TRo/RC, ETo/RC, and DIo/RC) were all changed in P. odoratum under the CC system. Furthermore, 13,798 genes that exhibited differential expression genes (DEGs) were identified in the P. odoratum leaves of CC and first cropping (FC) plants. Among them, 7932 unigenes were upregulated, while 5860 unigenes were downregulated. Here, the DEGs encoding proteins associated with photosynthesis and carbon assimilation showed a significant decrease in expression under the CC system, such as the PSII protein complex, PSI protein complex, Cytochorome b6/f complex, the photosynthetic electron transport chain, light-harvesting chlorophyll protein complex, and Calvin cycle, etc., -related gene. This study demonstrates that CC can suppress photosynthesis and carbon mechanism in P. odoratum, pinpointing potential ways to enhance photosynthetic efficiency in the CC of plants.

16.
Plants (Basel) ; 12(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687354

ABSTRACT

Inoculation with Azospirillum brasilense has promisingly increased plant yield and nutrient acquisition. The study aimed to estimate the dose of A. brasilense that increases yield, gas exchange, nutrition, and foliar nitrate reduction. The research was carried out in a greenhouse at Ilha Solteira, in a hydroponic system in randomized blocks with four replicates. The treatments consisted of doses of inoculation with A. brasilense strains AbV5 and AbV6 via nutrient solution (0, 8, 16, 32, and 64 mL 100 L-1). Inoculation with A. brasilense at calculated doses between 20 and 44 mL provided the highest fresh and dry mass of shoots and roots, number of leaves, and leaf yield. In addition, the calculated doses of inoculation with A. brasilense increased the accumulation of N, P, K, Ca, Mg, S, B, Fe, Mn, and Zn in shoots and roots, except the accumulation of Ca in roots. It also increased cell membrane integrity index (15%), relative water content (13%), net photosynthesis rate (85%), intracellular CO2 concentration (15%), total chlorophyll (46%), stomatal conductance (56%), transpiration (15%), and water use efficiency (59%). Hence, inoculation with A. brasilense at doses between 20 and 44 mL 100 L-1 is considered the best approach for increasing the growth, yield, accumulation of nutrients, and gas exchange of hydroponically grown iceberg lettuce.

17.
Plants (Basel) ; 12(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37653932

ABSTRACT

Major research on photosynthesis has been carried out under steady light. However, in the natural environment, steady light is rare, and light intensity is always changing. Changing light affects (usually reduces) photosynthetic carbon assimilation and causes decreases in biomass and yield. Ecologists first observed the importance of changing light for plant growth in the understory; other researchers noticed that changing light in the crop canopy also seriously affects yield. Here, we review the effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation under changing light in higher plants. In general, dynamic photosynthesis is more sensitive to environmental and non-environmental factors than steady photosynthesis, and dynamic photosynthesis is more diverse than steady photosynthesis. Finally, we discuss the challenges of photosynthetic research under changing light.

18.
Curr Biol ; 33(17): 3625-3633.e3, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37567171

ABSTRACT

The phenological changes induced by climate warming have profound effects on water, energy, and carbon cycling in forest ecosystems. In addition to pre-season warming, growing-season warming may drive tree phenology by altering photosynthetic carbon uptake. It has been reported that the effect of pre-season warming on tree phenology is decreasing. However, temporal change in the effect of growing-season warming on tree phenology is not yet clear. Combining long-term ground observations and remote-sensing data, here we show that spring and autumn phenology were advanced by growing-season warming, while the accelerating effects of growing-season warming on tree phenology were progressively disappearing, manifesting as phenological events converted from being advanced to being delayed, in the temperate deciduous broadleaved forests across the Northern Hemisphere between 1983 and 2014. We further observed that the effect of growing-season warming on photosynthetic productivity showed a synchronized decline over the same period. The responses of phenology and photosynthetic productivity had a strong linear relationship with each other, and both showed significant negative correlations with the elevated temperature and vapor pressure deficit during the growing season. These findings indicate that warming-induced water stress may drive the observed decline in the responses of tree phenology to growing-season warming by decelerating photosynthetic productivity. Our results not only demonstrate a close link between photosynthetic carbon uptake and tree seasonal activities but also provide a physiological perspective of the nonlinear phenological responses to climate warming.


Subject(s)
Ecosystem , Trees , Seasons , Temperature , Climate Change , Carbon
19.
Plant J ; 116(4): 1172-1193, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37522418

ABSTRACT

Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Photosynthesis , Protein Processing, Post-Translational , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism
20.
Plant Physiol Biochem ; 201: 107904, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506651

ABSTRACT

Selenium (Se) is a microelement that can counteract (a)biotic stresses in plants. Excess antimony (Sb) will inhibit plant photosynthesis, which can be alleviated by appropriate doses of Se but the associated mechanisms at the molecular levels have not been fully explored. Here, a rice variety (Yongyou 9) was exposed to selenite [Se(IV), 0.2 and 0.8 mg L-1] alone or combined with antimonite [Sb(III), 5 and 10 mg L-1]. When compared to the 10 mg L-1 Sb treatment alone, addition of Se in a dose-dependent manner 1) reduced the heat dissipation efficiency resulting from the inhibited donors, Sb concentrations in shoots and roots, leaf concentrations of fructose, H2O2 and O2•-; 2) enhanced heat dissipation efficiency resulting from the inhibited accepters value, concentrations of Chl a, sucrose and starch, and the enzyme activity of adenosine diphosphate glucose pyrophosphorylase, sucrose phosphate synthase, and sucrose synthase; but 3) did not alter gas exchange parameters, concentrations of Chl b and total Chl, enzyme activity of soluble acid invertase, and values of maximum P700 signal, photochemical efficiency of PSI and electron transport rate of PSI. Se alleviated the damage caused by Sb to the oxygen-evolving complex and promoted the transfer of electrons from QA to QB. When compared to the 10 mg L-1 Sb treatment alone, addition of Se 1) up-regulated genes correlated to synthesis pathways of Chl, carotenoid, sucrose and glucose; 2) disturbed signal transduction pathway of abscisic acid; and 3) upregulated gene expression correlated to photosynthetic complexes (OsFd1, OsFER1 and OsFER2).


Subject(s)
Oryza , Selenium , Electron Transport , Antimony/pharmacology , Oryza/genetics , Oryza/metabolism , Selenious Acid/pharmacology , Selenious Acid/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Electrons , Photosynthesis , Selenium/pharmacology , Plant Leaves/metabolism , Carbon Cycle , Sucrose/metabolism , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL