Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Front Plant Sci ; 15: 1438967, 2024.
Article in English | MEDLINE | ID: mdl-39239204

ABSTRACT

Objective: Carnation is a plant that holds high value in terms of its edibility, medicinal properties, and ornamental appeal. Creating no sense he aim of this study was to evaluate the antioxidant and antitumor properties of extracts derived from various parts of the carnation plant. Metabolomics technology was employed to identify the primary chemical constituents. Methods: Initially, we measured the total phenolic and total flavonoid contents in carnation roots, stems, leaves, and flowers, followed by assessing the antioxidant and anti-tumor capabilities of each component using diverse experimental methods. Subsequently, UPLC-MS/MS was employed to identify metabolites in different parts of carnation and investigate their roles in antioxidant and anti-tumor activities. Results: Mention numerical value- for better underatnding- Results of the study indicated that the methanol extract obtained from carnation flowers and roots exhibited superior antioxidant capacity compared to that from the stems and leaves. This disparity may be attributed to the abundance of polyphenols, flavonoids, and antioxidants present in the flowers, including methyl ferulate and luteolin-4'-O-glucoside. Furthermore, the significant presence of the anthraquinone compound rhein-8-O-glucoside in carnation roots may contribute to their enhanced antioxidant properties. Ten distinct compounds were isolated and recognized in carnation flowers, with Isoorientin 2"-O-rhamnoside and Kurarinone demonstrating notable antioxidant activity and binding affinity to SOD1 and SOD3, as validated through antioxidant screening and molecular docking. Conclusion: Overall, the findings from this study have expanded our knowledge of the phytochemical composition across different anatomical regions of the carnation plant, providing valuable insights for its holistic utilization.

2.
Planta ; 259(4): 84, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448635

ABSTRACT

MAIN CONCLUSION: A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.


Subject(s)
Dianthus , Oxygenases , Humans , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Plant Breeding , Electroporation , Ribonucleoproteins
3.
New Phytol ; 241(4): 1605-1620, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179647

ABSTRACT

Dynamic DNA methylation regulatory networks are involved in many biological processes. However, how DNA methylation patterns change during flower senescence and their relevance with gene expression and related molecular mechanism remain largely unknown. Here, we used whole genome bisulfite sequencing to reveal a significant increase of DNA methylation in the promoter region of genes during natural and ethylene-induced flower senescence in carnation (Dianthus caryophyllus L.), which was correlated with decreased expression of DNA demethylase gene DcROS1. Silencing of DcROS1 accelerated while overexpression of DcROS1 delayed carnation flower senescence. Moreover, among the hypermethylated differentially expressed genes during flower senescence, we identified two amino acid biosynthesis genes, DcCARA and DcDHAD, with increased DNA methylation and reduced expression in DcROS1 silenced petals, and decreased DNA methylation and increased expression in DcROS1 overexpression petals, accompanied by decreased or increased amino acids content. Silencing of DcCARA and DcDHAD accelerates carnation flower senescence. We further showed that adding corresponding amino acids could largely rescue the senescence phenotype of DcROS1, DcCARA and DcDHAD silenced plants. Our study not only demonstrates an essential role of DcROS1-mediated remodeling of DNA methylation in flower senescence but also unravels a novel epigenetic regulatory mechanism underlying DNA methylation and amino acid biosynthesis during flower senescence.


Subject(s)
Dianthus , Syzygium , Dianthus/genetics , Syzygium/metabolism , Plant Senescence , DNA Methylation/genetics , Amino Acids/metabolism , Flowers/genetics , Flowers/metabolism
5.
Plant Biotechnol J ; 21(11): 2307-2321, 2023 11.
Article in English | MEDLINE | ID: mdl-37626478

ABSTRACT

Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.


Subject(s)
Dianthus , Syzygium , Dianthus/genetics , Syzygium/metabolism , Flowers , Ethylenes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Plants (Basel) ; 12(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37514352

ABSTRACT

Gaseous factors affect post-harvest physiological processes in horticultural crops, including ornamental flowers. However, the molecular responses of cut flowers to the low-oxygen conditions associated with modified atmosphere packaging (MAP) have not yet been elucidated. Here, we show that storage of cut carnation flowers in a sealed polypropylene bag decreased the oxygen concentration in the bag to 3-5% and slowed flower opening. The vase life of carnation flowers after storage for seven days under MAP conditions was comparable to that without storage and was improved by the application of a commercial-quality preservative. The adenylate energy charge (AEC) was maintained at high levels in petals from florets stored under MAP conditions. This was accompanied by the upregulation of four hypoxia-related genes, among which the HYPOXIA-RESPONSIVE ETHYLENE RESPONSE FACTOR and PHYTOGLOBIN genes (DcERF19 and DcPGB1) were newly identified. These results suggest that hypoxia-responsive genes contribute to the maintenance of the energy status in carnation flowers stored under MAP conditions, making this gas-controlling technique potentially effective for maintaining cut flower quality without cooling.

7.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298450

ABSTRACT

Carnations are one of the most popular ornamental flowers in the world with varied flower colors that have long attracted breeders and consumers alike. The differences in carnation flower color are mainly the result of the accumulation of flavonoid compounds in the petals. Anthocyanins are a type of flavonoid compound that produce richer colors. The expression of anthocyanin biosynthetic genes is mainly regulated by MYB and bHLH transcription factors. However, these TFs have not been comprehensively reported in popular carnation cultivars. Herein, 106 MYB and 125 bHLH genes were identified in the carnation genome. Gene structure and protein motif analyses show that members of the same subgroup have similar exon/intron and motif organization. Phylogenetic analysis combining the MYB and bHLH TFs from Arabidopsis thaliana separates the carnation DcaMYBs and DcabHLHs into 20 subgroups each. Gene expression (RNAseq) and phylogenetic analysis shows that DcaMYB13 in subgroup S4 and DcabHLH125 in subgroup IIIf have similar expression patterns to those of DFR, ANS, and GT/AT, which regulate anthocyanin accumulation, in the coloring of carnations, and in red-flowered and white-flowered carnations, DcaMYB13 and DcabHLH125 are likely the key genes responsible for the formation of red petals in carnations. These results lay a foundation for the study of MYB and bHLH TFs in carnations and provide valuable information for the functional verification of these genes in studies of tissue-specific regulation of anthocyanin biosynthesis.


Subject(s)
Anthocyanins , Dianthus , Humans , Anthocyanins/metabolism , Dianthus/metabolism , Phylogeny , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Flavonoids/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
8.
Front Nutr ; 10: 1166375, 2023.
Article in English | MEDLINE | ID: mdl-37275648

ABSTRACT

Carnation is edible flower that has potent antioxidant properties and is used in traditional Chinese medicinal system and food industry. The phytochemicals responsible for these various proprieties, however, are not fully understood. Thus, in order to recognize metabolite diversity and variability in carnation flowers of different colors and to discover key metabolites that contribute to the differences in antioxidant and anticancer activities, widely targeted LC-MS/MS-based metabolomics analysis was conducted on purple, green, yellow, and white carnation flowers. We identified and chemically categorized 932 metabolites. Metabolic compounds varied significantly with flower color. Several flavonoids, organic acids, phenolic acids, and nucleotides and their derivatives were found to be specific differential metabolites in purple flowers. A total of 128 key differential metabolites were screened. The purple flowers were found to have the highest antioxidant and anticancer activities compared to the other colored flowers. Correlation analysis revealed that the 6-hydroxykaempferol-3,6-O-diglucoside, 6-hydroxykaempferol-7-O-glucoside, quercetin-3-O-sophoroside, and 2'-deoxyguanosine were found to be the major constituents of the antioxidant and anticancer activities. 2'-Deoxyguanosine has effective antiproliferative activity against A549 and U2OS cells for the first report. At the same time, the combination of 2'-deoxyguanosine with 6-hydroxykaempferol-3, 6-O-diglucoside, or quercetin-3-O-sophoroside have also been found to increase the antitumor activity of 2'-deoxyguanosine. These discoveries enrich information on the phytochemical composition of carnation of different colors and provide resources for the overall use and improvement of carnation flowers quality.

9.
Plant Physiol Biochem ; 198: 107698, 2023 May.
Article in English | MEDLINE | ID: mdl-37060867

ABSTRACT

Carnation (Dianthus caryophyllus L.) is a floral crop that is highly valuable commercially. However, high temperatures adversely affect its growth and the quality of its cut flowers. Melatonin (MT) is a indole substance that can mitigate plant damage under heat stress. In this study, the leaves of carnation seedlings were sprayed with different concentrations of MT before exposure to high temperature. The indices of growth, physiological and chlorophyll fluorescence were measured and analyzed by the membership function method. The results showed that treatment with 100 µM MT was the most effective at ameliorating damage on carnation. We then analyzed the effects of 100 µM MT pretreatment on carnation at different time points of heat stress and found that this concentration of MT ameliorated the damage caused by heat stress, increased the content of photosynthetic pigments, enhanced the performance of photosystem II and improved photosynthesis. In addition, MT also reduced cell damage and lipid peroxidation, increased the activities of antioxidant enzymes and regulated the accumulation of osmotic substances in carnation. Moreover, MT increased the fresh/dry weight of stems and roots, promoted the opening of stomata, and protected the integrity of chloroplast structure of carnation. Compared with heat stress, pre-spraying with MT significantly down-regulated the transcription of a chlorophyll degradation gene and up-regulated the transcription of stress-related genes. Overall, this study provides a theoretical foundation for the mitigation of the adverse effects of exogenous MT under heat stress and proposes beneficial implications for the management of other plants subjected to global warming.


Subject(s)
Dianthus , Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Stress, Physiological , Antioxidants/metabolism , Photosynthesis , Plant Leaves/metabolism , Chlorophyll/metabolism
10.
Nanotechnology ; 34(27)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37015211

ABSTRACT

Carnation-like ZnO was synthesized by the facile precipitation method (at room temperature and in 120 min) to decompose dyes in an aqueous medium. The carnation-like ZnO had a stratified porous structure with a size of about 2-3µm, its petals had a smooth surface with a thickness of 5-10 nm and a width of about 300-500 nm. Ag-ZnO composites were synthesized using glucose with the assistance of PVP. The morphology of Ag-ZnO composites was almost unchanged compared to ZnO. Where, the Ag nanoparticles in the size range of 5-15 nm were uniformly dispersed on the ZnO petals, improving the catalytic ability of the composites in tartrazine (TA) degradation. The influence of Ag content on catalytic structure and performance of composite was studied. The 5Ag-ZnO sample had the highest BET surface area and pore volume and the lowest gap energy (Eg) among the as-synthesized samples. The 5Ag-ZnO sample proclaimed the degradation efficiency in 70 min of 97.8% and thekapof 0.031 min-1. The influences of catalyst content, solution pH, and concentration of dye on the photodegradation efficiency of the composite were thoroughly studied. Besides, the photocatalytic activity of the composite was demonstrated by degrading various organic substances and reusability. In addition, it was compared to a metal-semiconductor catalyst of Au-ZnO and semiconductor-semiconductor catalysts of MoS2-ZnO, Cu2O-ZnO, and SiO2-ZnO. The catalytic mechanism under visible light was proposed.

SELECTION OF CITATIONS
SEARCH DETAIL