Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.421
Filter
1.
J Clin Orthop Trauma ; 53: 102438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975295

ABSTRACT

Background: Paediatric femoral shaft fractures can be managed with single- or double-leg hip spica casting between ages six-months and six-years. The aim of this review was to determine if single-leg hip spicas reduce the impact on family life without compromising fracture stability. Methods: The study was registered on PROSPERO (CRD42023454309). MEDLINE, Embase, Web of Science, Cochrane Library, and clinical trial registers were searched to May 2023 for level I-III evidence. Primary outcomes were impact on family life and fracture stability. Where appropriate, Meta-analysis was completed using RevMan v5.4. Risk of bias was assessed using RoB 2.0 (RCTs) and ROBINS-I (non-RCTs). Certainty of evidence was measured with GRADE. Results: From 234 identified papers, four met the inclusion criteria (two RCTs; two non-RCTs). A total of 339 children were included (single-leg spica: 176; double-leg spica: 163). Three studies were 'high risk' and one study 'moderate risk' of bias. Impact on family life parameters were too heterogenous for pooled meta-analysis. Non-pooled data identified significantly more missed work days in the double-leg spica group and the 'Impact on Family' Scale significantly favoured single-leg spicas. For fracture stability, meta-analysis identified that (i) mal-union rates were significantly lower in single-leg spica: OR 0.08 (95 % CI 0.01 to 0.69; p = 0.02); (ii) MUA in theatre was not significantly different: OR 0.97 (95 % CI 0.19 to 4.86; p = 0.97); and (iii) wedge adjustment was not significantly different: OR 3.46 (95 % CI 0.48 to 24.92; p = 0.22). Certainty of evidence was assessed as 'very low'. Conclusion: Single-leg hip spicas may be associated with reduced impact on family life without compromising fracture stability compared with double-leg hip spicas. However, the evidence is weak. Therefore, a propensity score matched observational study is required to understand if subgroups of patients (age, fracture pattern, mechanism of injury) would benefit from a single- or double-leg hip spica.

2.
Cureus ; 16(6): e61515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957257

ABSTRACT

BACKGROUND: The most common form of movement disorder presented in children with cerebral palsy is spasticity, and dynamic equinus is the most common spastic ankle deformity. Botulinum toxin (BT) injection is now an established first-line treatment for focal spasticity. AIM: To assess the effects of BT injection with casting in the treatment of dynamic equinus in children diagnosed with cerebral palsy with spastic diplegia. SETTING AND DESIGN: A prospective randomized controlled trial was conducted among patients aged 2-12 years with cerebral palsy and spastic diplegia, attending the general outpatient department and admitted to the indoor facility of the Department of Physical Medicine and Rehabilitation and the Department of Pediatric Orthopedics at King George's Medical University, Lucknow. MATERIAL AND METHODS: Two groups of 19 patients each were formed. Group A received BT injection with casting, whereas in group B, only a cast was applied. Outcome measures including spasticity by Modified Ashworth Scale (MAS), Modified Tardieu Scale (MTS), range of motion (ROM), passive ankle dorsiflexion, and Gross Motor Function Measure (GMFM-66) (dimensions D and E) were assessed before and after the intervention. RESULTS: The participants in groups A and B were age-matched. A statistically significant difference was seen within group A and group B for MAS, passive ROM-dorsiflexion (PROM-DF), and passive ROM-plantarflexion (PROM-PF) at various follow-ups. In the 3rd week, MAS in each group was statistically insignificant (p-value> 0.05). CONCLUSION: There was a significant improvement in tone and a significant increase in the passive range of motion in both groups.

3.
Adv Sci (Weinh) ; : e2405320, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995232

ABSTRACT

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP). In this work, a novel approach is demonstrated to replicate amorphous metals from fused silica glass, derived from additive manufacturing and structured using hot embossing and casting, enabling the fabrication of metal insets with features in the range of 300 nm and a surface roughness of below 10 nm. By partially crystallizing the amorphous metal, during the replication process, the insets gain a high hardness of up to 800 HV. The metal molds are successfully used in polymer injection molding using different polymers including polystyrene (PS) and polyethylene (PE) as well as glass nanocomposites. This work is of significant importance to the field as it provides a production method for the increasing demand for sub-micron-structured tooling in the area of polymer replication while substantially reducing their cost of production.

4.
Polymers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000655

ABSTRACT

Microfiltration membranes derived from semi-crystalline polymers face various challenges when synthesized through the extrusion-casting technique, including the use of large quantities of polymer, long casting times, and the generation of substantial waste. This study focuses on synthesizing these membranes using spin-casting, followed by stretch-induced pore formation. Recycled high-density polyethylene (HDPE) and virgin polyethylene powder, combined with a calcium carbonate filler, were used as the source materials for the membranes. The influence of the polymer-filler ratio with and without stretching on the morphology, tensile strength, and water flow rate was investigated. Optimal conditions were determined, emphasizing a balance between pore structure and mechanical integrity. The permeable membrane exhibited a water flow rate of 19 mL/min, a tensile strength of 32 MPa, and a water contact angle of 126°. These membranes effectively eliminated suspended particles from water, with their performance evaluated against that of commercially available membranes. This research, carried out utilizing the spin-casting technique, outlines a synthesis route for microfiltration membranes tailored to semi-crystalline polymers and their plastic forms.

5.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000666

ABSTRACT

Oral film (OF) research has intensified due to the effortless administration and advantages related to absorption in systemic circulation. Chitosan is one of the polymers widely used in the production of OFs; however, studies evaluating the maintenance of the active principles' activity are incipient. Propolis has been widely used as an active compound due to its different actions. Printing techniques to incorporate propolis in OFs prove to be efficient. The objective of the present study is to develop and characterize oral films based on chitosan and propolis using printing techniques and to evaluate the main activities of the extract incorporated into the polymeric matrix. The OFs were characterized in relation to the structure using scanning and atomic force electron microscopy; the mechanical properties, disintegration time, wettability, and stability of antioxidant activity were evaluated. The ethanolic extract of green propolis (GPEE) concentration influenced the properties of the OFs. The stability (phenolic compounds and antioxidant activity) was reduced in the first 20 days, and after this period, it remained constant.

6.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998216

ABSTRACT

Recent advances in the leisure boat industry have spurred demand for improved materials for propeller manufacturing, particularly high-strength aluminum alloys. While traditional Al-Si alloys like A356 are commonly used due to their excellent castability, they have limited mechanical properties. In contrast, 7xxx series alloys (Al-Zn-Mg-Cu based) offer superior mechanical characteristics but present significant casting challenges, including hot-tearing susceptibility (HTS). This study investigates the optimization of 7xxx series aluminum alloys for low-pressure die-casting (LPDC) processes to enhance propeller performance and durability. Using a constrained rod-casting (CRC) method and finite element simulations, we evaluated the HTS of various alloy compositions. The results indicate that increasing Zn and Cu contents generally increase HTS, while a sufficient Mg content of 2 wt.% mitigates this effect. Two optimized quaternary Al-Zn-Mg-Cu alloys with relatively low HTS were selected for LPDC propeller production. Simulation and experimental results demonstrated the effectiveness of the proposed alloy compositions, highlighting the need for further process optimization to prevent hot tearing in high Mg and Cu content alloys.

7.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998235

ABSTRACT

Twin-roll strip casting (TRSC) technology has unique advantages in the production of non-oriented electrical steel. However, the hot deformation behavior of high-grade electrical steel produced by TRSC has hardly been reported. This work systematically studied the hot deformation behavior of free-Al 2.43 wt.% Si electrical steel strip produced by twin-roll strip casting. During the simulated hot rolling test, deformation reduction was set as 30%, and the ranges of deformation temperature and strain rate were 750~950 °C and 0.01~5 s-1, respectively. The obtained true stress-strain curves show that the peak true stress decreased with an increase in the deformation temperature and with a decrease in the strain rate. Then, the effect of hot deformation parameters on microstructure and texture was analyzed using optical microstructure observation, X-ray diffraction, and electron backscattered diffraction examination. In addition, based on the obtained true stress-strain curves of the strip cast during hot deformation, the constitutive equation for the studied silicon steel strip was established, from which it can be found that the deformation activation energy of the studied steel strip is 83.367 kJ/mol. Finally, the kinetics model of dynamic recrystallization for predicting the recrystallization volume percent was established and was verified by a hot rolling experiment conducted on a rolling mill.

8.
Materials (Basel) ; 17(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998256

ABSTRACT

Steel products typically undergo intricate manufacturing processes, commencing from the liquid phase, with casting, hot rolling, and laminar cooling being among the most crucial processes. In the background of carbon neutrality, thin-slab casting and direct rolling (TSCR) technology has attracted significant attention, which integrates the above three processes into a simpler and more energy-efficient sequence compared to conventional methods. Multi-scale computational modeling and simulation play a crucial role in steel design and optimization, enabling the prediction of properties and microstructure in final steel products. This approach significantly reduces the time and cost of production compared to traditional trial-and-error methodologies. This study provides a review of cross-scale simulations focusing on the casting, hot-rolling, and laminar cooling processes, aiming at presenting the key techniques for realizing cross-scale simulation of the TSCR process.

9.
Adv Healthc Mater ; : e2400550, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031096

ABSTRACT

An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.

10.
Int J Biol Macromol ; 276(Pt 1): 133860, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009256

ABSTRACT

Road accidents and infection-causing diseases during bone surgery are serious problems in orthopedics, and thus, addressing these pressing challenges is crucial. In the present study, the 70S30C calcium silicate bioactive material (BM) is synthesized by a sustainable approach employing a precipitation method using recycled rice husk and eggshells as a precursor of silica and calcium. Further, 70S30C BM is composited with sodium alginate (SA) and polyvinyl alcohol (PVA), and the films were prepared by solvent casting method. The composite films were prepared without the addition of acid, binder, and crosslinking agents. Further, the films were characterized by BET, XRD, ATR-FTIR, SEM, and EDS mapping. The in vitro bioactivity and biodegradation study is performed in the simulated body fluid (SBF). The in vitro haemolysis study is executed using human blood and the results demonstrate haemocompatibility of the composite films. The ex ovo CAM assay also exhibits good neovascularization. The in vitro and in vivo biocompatibility assay proves its non-toxic nature. Further, the in vivo study reveals that the engineered composite film demonstrates accelerated osteogenesis. This work broadens the orthopedic potential of the composite film and offers bioactivity, haemocompatibility, angiogenesis, non-toxicity, and in vivo osteogenesis which would serve as a potential candidate for bone tissue engineering application.

11.
Heliyon ; 10(13): e33623, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035504

ABSTRACT

In the production of castings, residual stresses arise in the cooling process, the level of which is often unknown. Their significance in engineering practice is very important because they are superposed on the stresses from the service load and are often the primary cause of material failure leading to failure of the equipment or structure. Their quantification using numerical simulations is rather difficult because many variables enter into the calculation simulating technological processes. Therefore, residual stress levels are most often determined in such cases by experimental measurement and, if possible, by monitoring and evaluating the history of parameter changes due to changes in the input parameters. In the present paper, the results of experimental measurements of residual stresses in synthetic cast iron castings are presented, where the effect of Ti microalloying on residual stress levels was assessed. Based on the comparison of the results obtained experimentally on castings made from grey cast iron, it can be concluded that the addition of Ti metal reduced the residual stress levels while maintaining the tensile strength and hardness HB.

12.
Sci Rep ; 14(1): 16999, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043708

ABSTRACT

This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration). Regression analysis was employed to develop a predictive mathematical model for the tensile strength of the hybrid composites and to assess the significance of process parameters. The optimized composite achieved a predicted tensile strength of 186.81 MPa and an experimental strength of 190.67 MPa using 7.5 vol% brown pumice, 2.5 vol% coal ash, a pouring temperature of 700 °C, stirrer speed of 500 rpm, and stirring duration of 10 min. This represents a 52.23% improvement over the as-cast aluminum alloy's tensile strength. Characterization results revealed that brown pumice and coal ash contain robust minerals (SiO2, Fe2O3, Al2O3) suitable for reinforcing metal matrices like aluminum, titanium, and magnesium. Thermogravimetric and differential thermal analyses demonstrated thermal stability up to 614.01 °C for the optimized composite, making it suitable for brake disc applications.

13.
Article in English | MEDLINE | ID: mdl-38895752

ABSTRACT

BACKGROUND: As it is known, the anatomy of the vessels is examined by removing the cast of the vessels inside the organs. Generally, liquid material (polyester, takilon, etc.) is injected into the vessels with positive pressure to remove the cast from the vessels of the organs. We built a machine to remove the cast of the vessels inside the organ. We named it corrosion machine. MATERIALS AND METHODS: Sheep kidneys were used in our experiment. After the kidneys were cannulated, they were placed in the vacuum chamber. With the operation of the vacuum pump, negative pressure was created in the vacuum chamber. With negative pressure, kidneys and its vessels expanded. Takilon or polyester easily entered the vessels of the kidney. The cast of the vessels of the kidney was removed. With this newly developed technique, the anatomy of the vessels whose casts were removed was examined with the naked eye, stereomicroscope or SEM. RESULTS: The corrosion machine we built can cast the vessels of the organs very well. Takilon or polyester (which we used in our experiment) easily entered the capillaries under the effect of negative pressure. CONCLUSIONS: We think that this method can also be applied to other organs and used in vascular research.

14.
ACS Nano ; 18(27): 17890-17900, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38917480

ABSTRACT

Ultrathin composite electrolytes hold great promise for high energy density solid-state lithium metal batteries (SSLMBs). However, finding an electrolyte that can simultaneously balance the interfacial stability of the lithium anode and high-voltage cathode is challenging. The present study utilized the both-side tape casting technique to fabricate ultrathin asymmetric composite electrolytes reinforced with polyimide (PI) fiber membrane, with a thickness of 26.8 µm. The implementation of this asymmetric structural design enables SSLMBs to attain favorable interfacial characteristics, such as exceptional resistance to lithium dendrite puncture and compatibility with high voltages. The suppression of lithium dendrite growth and the extension of the cycle life of lithium symmetric batteries by 4000 h are both experimental and theoretically demonstrated under the dual confinement of PI fiber membrane and Li7La3Zr2O12 ceramic fibers. Furthermore, the integration of multicomponent solid electrolyte interphase and cathode electrolyte interface interfacial layers into the lithium anode and high-voltage cathode enhance theirs cycling stability. With a gravimetric/volumetric energy density of 333.1 Wh kg-1/713.2 Wh L-1, the assembled LiNi0.8Co0.1Mn0.1O2 pouch cell demonstrates exceptional safety. The extensive application of this design concept to SSLMBs enables the resolution of electrode/electrolyte interface issues.

15.
Front Bioeng Biotechnol ; 12: 1398730, 2024.
Article in English | MEDLINE | ID: mdl-38938981

ABSTRACT

Combination therapy with oral administration of several active ingredients is a popular clinical treatment for cancer. However, the traditional method has poor convenience, less safety, and low efficiency for patients. The combination of traditional pharmaceutical techniques and advanced material conversion methods can provide new solutions to this issue. In this research, a new kind of hybrid film was created via coaxial electrospraying, followed by a casting process. The films were composed of Reglan and 5-fluorouracil (5-FU)-loaded cellulose acetate (CA) core-shell particles in a polyvinylpyrrolidone (PVP) film matrix. Microscopic observations of these films demonstrated a solid cross section loaded with core-shell particles. X-ray diffraction and Fourier-transform infrared tests verified that the Reglan and 5-FU loaded in the films showed amorphous states and fine compatibilities with the polymeric matrices, i.e., PVP and CA, respectively. In vitro dissolution tests indicated that the films were able to provide the desired asynchronous dual-drug delivery, fast release of Reglan, and sustained release of 5-FU. The controlled release mechanisms were shown to be an erosion mechanism for Reglan and a typical Fickian diffusion mechanism for 5-FU. The protocols reported herein pioneer a new approach for fabricating biomaterials loaded with multiple drugs, each with its own controlled release behavior, for synergistic cancer treatment.

16.
Materials (Basel) ; 17(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930205

ABSTRACT

The low-pressure die casting (LPDC) process was experimentally and numerically studied to produce AlSi7Mg0.3 components such as steering knuckles. Steering knuckles are important safety components in the context of a vehicle's suspension system, serving as the mechanical interface that facilitates the articulation of the steering to control the front wheel's orientation, while simultaneously bearing the vertical load imposed by the vehicle's weight. This work focuses on the development of a numerical model in ProCAST®, replicating the production of the aforementioned part. The model analyses parameters such as the filling dynamics, solidification process, and presence of shrinkage porosities. For the purpose of evaluating the quality of the castings, six parts were produced and characterised, both mechanically (tensile and hardness tests) and microstructurally (porosity and optical microscopy analysis). When correlating simulation results with the available experimental data, it is possible to conclude that the usage of the LPDC process is a viable alternative to the use of steels and other metals for the production of very high-quality castings while using lighter alloys such as aluminium and magnesium in more demanding applications.

17.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932024

ABSTRACT

This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.

18.
Int J Biol Macromol ; 274(Pt 2): 133197, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885862

ABSTRACT

Biopolymer-clay composite films were synthesized and characterized for food packaging material. The synthesis was conducted in two stages. Cetrimonium bromide-modified bentonite (CTAB-bentonite) was first exchanged with Ag ions to obtain Ag-CTAB-bentonite. Biopolymer-clay composite films were then performed by a solution-casting method between chitosan (biopolymer) and Ag-CTAB-bentonite or between chitosan and CTAB-bentonite. Different weights of CTAB-bentonite (3% and 5% wt.) and Ag-CTAB-bentonite (3% and 5% wt.) were used during the second stage. The resultant films were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscope coupled with energy dispersive X-ray spectroscopy, atomic force microscopes, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, optical measurement, and others (moisture content, swelling behavior, water solubility, antibacterial, shredded carrot preservation, and biodegradability). Results indicated that the properties (thermal stability, thermomechanical ability, UV-visible light barrier, shredded carrot preservation) of the chitosan-based film incorporated with the synthesized composites were enhanced compared to those of the CS film. The CS/(CTAB-bentonite)-3% and CS/(Ag-CTAB-bentonite)-3% films exhibited antibacterial properties against Escherichia coli, Salmonella enterica subp. enterica, Staphylococcus aureus, and Listeria monocytogenes. The chitosan-based film reinforced with the two prepared composites can be potential for food preservation and packaging.

19.
Heliyon ; 10(11): e31879, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882355

ABSTRACT

The paper deals with the design and execution of the test of the castability into preheated plaster moulds. Castability is an important parameter for the evaluation of foundry alloys. When the metal does not run, it usually causes an irreparable defect in the casting. Therefore, it is necessary to verify this technological property correctly for different types of moulds. The castability test for plaster moulds and bronze is not defined, therefore The Vertical Bar Test was adopted, subsequently modified, and applied to plaster moulds. The models are made of wax and the plaster moulds are made according to the manufacturer's prescription and heated to a predetermined temperature. Copper alloy specifically CuSn10 was selected as the alloy to be investigated. The aim of the experiment is to correctly set up and observe the parameters and the method of performing the castability test using gravity casting technology in plaster moulds. It is assumed, as the casting temperature increases, the run-in length of the metal alloy will increase. An important goal is to obtain relevant results, as many variables affect the progress of the test and so there is a risk of error. Due to the time-consuming nature of producing a real disposable model and mould, any failure to succeed would have an economic impact on the foundry, affecting the price of castings. The new method for evaluating castability in plaster moulds can be applied to other types of alloys when temperature changes occur.

20.
Carbohydr Polym ; 340: 122331, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858014

ABSTRACT

Self-supporting films from amphiphilic hyaluronan are suitable for medical applications like wound dressings or resorbable implants. These films are typically cast from water/alcohol solutions. However, when the mixed solvent evaporates in ambient air, convection flows develop in the solution and become imprinted in the film, potentially compromising its properties. Consequently, we developed a novel film manufacturing method: drying in a closed box under saturated vapour conditions. Using this approach, we prepared a series of optically clear lauroyl-hyaluronan (LHA) films with uniform thickness and compared them to their air-dried counterparts. We first evaluated swelling ratios and elastic moduli for LHA films with varying degrees of substitution. The box-dried films swelled significantly less and were 1-2 orders of magnitude stiffer than air-dried films from the same LHA sample. Confocal microscopy revealed that box-dried films exhibited a regular microstructure, while air-dried films displayed a pore-size gradient and strong microstructure modulation due to convection flows. Local elastic modulus variations arising from these microstructures were assessed using nanoindentation mapping. Importantly, achieving the desired film stiffness requires much lower polymer modification when box-drying is used, enhancing the biological response to the material. These findings have implications for all polysaccharide formulations that utilize mixed solvents.

SELECTION OF CITATIONS
SEARCH DETAIL