Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(5): e23504, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421271

ABSTRACT

The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.


Subject(s)
Podocytes , Actins , Kidney , GTPase-Activating Proteins/genetics , Extracellular Matrix
2.
Biotechnol Bioeng ; 117(5): 1329-1336, 2020 05.
Article in English | MEDLINE | ID: mdl-31956991

ABSTRACT

The phenomenon of monoclonal antibody (mAb) interchain disulfide bond reduction during manufacturing processes continues to be a focus of the biotechnology industry due to the potential for loss of product, increased complexity of purification processes, and reduced stability of the drug product. We hypothesized that antibody reduction can be mitigated by controlling the cell culture redox potential and subsequently established a threshold redox potential above which the mAb remained intact and below which there were significant and highly variable amounts of reduced mAb. Using this knowledge, we developed three control schemes to prevent mAb reduction in the bioreactor by controlling the cell culture redox potential via an online redox probe. These control methodologies functioned by increasing the concentration of dissolved oxygen (DO), copper (II) (Cu), or both DO and Cu to maintain the redox potential above the threshold value. Using these methods, we were able to demonstrate successful control of antibody reduction. Importantly, the redox control strategies did not significantly impact the cell growth, viability, mAb production, or product quality attributes including aggregates, C-terminal lysine, high mannose, deamidation, and glycation. Our results demonstrate that controlling the cell culture redox potential is a simple and effective method to prevent mAb reduction.


Subject(s)
Antibodies, Monoclonal , Cell Culture Techniques/methods , Disulfides/metabolism , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Bioreactors , CHO Cells , Cricetinae , Cricetulus , Oxidation-Reduction
3.
Dev Cell ; 47(6): 741-757.e8, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30503751

ABSTRACT

Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion.


Subject(s)
Actin-Related Protein 3/physiology , Glomerular Filtration Barrier/physiology , Podocytes/physiology , Actin Cytoskeleton/metabolism , Actin-Related Protein 3/metabolism , Actins/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion , Focal Adhesions/metabolism , Glomerular Filtration Barrier/metabolism , Humans , Kidney/metabolism , Kidney/physiology , Mice , Mice, Knockout , Podocytes/metabolism , Signal Transduction , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
4.
Kidney Int ; 93(2): 519-524, 2018 02.
Article in English | MEDLINE | ID: mdl-28890327

ABSTRACT

Highly organized cell processes characterize glomerular podocytes in vivo. However, podocytes in culture have a simple morphology lacking cell processes, especially upon reaching confluence. Here, we aimed to establish culture conditions under which cultured podocytes extend cell processes at confluence. Among various culture conditions that could possibly cause phenotypic changes in podocytes, we examined the effects of heparin, all-trans retinoic acid, fetal bovine serum, and extracellular matrices on the morphology of podocytes in rat primary culture. Consequently, long arborized cell processes were observed to radiate extensively from the cell body only when cells were cultured in the presence of heparin and all-trans retinoic acid on laminin-coated dishes with decreasing concentrations of fetal bovine serum. Primary processes branching repeatedly into terminal processes and cell process insertion under adjacent cell bodies were evident by electron microscopy-based analysis. Immunostaining for podocin showed conspicuous elongations of intercellular junctions. Under these conditions, the expression levels of podocyte-specific proteins and genes were markedly upregulated. Thus, we succeeded in establishing culture conditions in which the cultured podocytes exhibit phenotypes similar to those under in vivo conditions.


Subject(s)
Cell Culture Techniques , Cell Shape , Cell Surface Extensions/ultrastructure , Podocytes/ultrastructure , Animals , Cell Proliferation , Cell Shape/drug effects , Cell Surface Extensions/drug effects , Cells, Cultured , Gene Expression Regulation , Heparin/pharmacology , Laminin/metabolism , Male , Phenotype , Podocytes/drug effects , Podocytes/metabolism , Rats, Wistar , Time Factors , Tretinoin/pharmacology
5.
Comput Vis ECCV ; 9913: 291-305, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27878138

ABSTRACT

Neural stem and progenitor cells (NPCs) generate processes that extend from the cell body in a dynamic manner. The NPC nucleus migrates along these processes with patterns believed to be tightly coupled to mechanisms of cell cycle regulation and cell fate determination. Here, we describe a new segmentation and tracking approach that allows NPC processes and nuclei to be reliably tracked across multiple rounds of cell division in phase-contrast microscopy images. Results are presented for mouse adult and embryonic NPCs from hundreds of clones, or lineage trees, containing tens of thousands of cells and millions of segmentations. New visualization approaches allow the NPC nuclear and process features to be effectively visualized for an entire clone. Significant differences in process and nuclear dynamics were found among type A and type C adult NPCs, and also between embryonic NPCs cultured from the anterior and posterior cerebral cortex.

6.
Int J Biol Macromol ; 84: 254-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26718865

ABSTRACT

The apparent viscosity, molecular weight, and molecular weight distribution are important physical properties that determine the functional properties of galactomannan gum. Gleditsia sinensis gum (GSG) in semi-solid state was pressure cell treated over a range of temperature (30-110 °C) under nitrogen maintained at a pressure of 1.0-4.0 MPa. Physicochemical properties of GSG samples both before and after the pressure cell treatment were characterized. These include measurements of rheological properties by LVDV-III Ultra Rheometer, molecular weight and radius of gyration by light scattering, and changes in surface morphology by scanning electron microscopy. GSG had the highest apparent viscosity at a treatment temperature of 30 °C; further increase in temperature led to decrease in apparent viscosity. The apparent viscosity of GSG can be efficiently improved at room temperature and low pressure. The process of pressure cell treatment of GSG in semi-solid state could be industrialized for enhancement of rheological properties of galactomannan gum.


Subject(s)
Gleditsia/chemistry , Mechanical Phenomena , Plant Gums/chemistry , Rheology , Molecular Weight , Solubility , Viscosity
7.
Proc Natl Acad Sci U S A ; 110(52): 21012-7, 2013 Dec 24.
Article in English | MEDLINE | ID: mdl-24324138

ABSTRACT

Osteocytes in the lacunar-canalicular system of the bone are thought to be the cells that sense mechanical loading and transduce mechanical strain into biomechanical responses. The goal of this study was to evaluate the extent to which focal mechanical stimulation of osteocyte cell body and process led to activation of the cells, and determine whether integrin attachments play a role in osteocyte activation. We use a novel Stokesian fluid stimulus probe to hydrodynamically load osteocyte processes vs. cell bodies in murine long bone osteocyte Y4 (MLO-Y4) cells with physiological-level forces <10 pN without probe contact, and measured intracellular Ca(2+) responses. Our results indicate that osteocyte processes are extremely responsive to piconewton-level mechanical loading, whereas the osteocyte cell body and processes with no local attachment sites are not. Ca(2+) signals generated at stimulated sites spread within the processes with average velocity of 5.6 µm/s. Using the near-infrared fluorescence probe IntegriSense 750, we demonstrated that inhibition of αVß3 integrin attachment sites compromises the response to probe stimulation. Moreover, using apyrase, an extracellular ATP scavenger, we showed that Ca(2+) signaling from the osteocyte process to the cell body was greatly diminished, and thus dependent on ATP-mediated autocrine signaling. These findings are consistent with the hypothesis that osteocytes in situ are highly polarized cells, where mechanotransduction occurs at substrate attachment sites along the processes at force levels predicted to occur at integrin attachment sites in vivo. We also demonstrate the essential role of αVß3 integrin in osteocyte-polarized mechanosensing and mechanotransduction.


Subject(s)
Bone and Bones/cytology , Cell Surface Extensions/physiology , Integrin alphaVbeta3/metabolism , Mechanotransduction, Cellular/physiology , Osteocytes/physiology , Animals , Biomechanical Phenomena , Calcium/metabolism , Fluorescence , Hydrodynamics , Image Processing, Computer-Assisted , Mice , Osteocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...