Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 25(1): 68-81, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35716369

ABSTRACT

BACKGROUND: Lower-grade gliomas (LGG) are heterogeneous diseases by clinical, histological, and molecular criteria. We aimed to personalize the diagnosis and therapy of LGG patients by developing and validating robust cellular morphometric subtypes (CMS) and to uncover the molecular signatures underlying these subtypes. METHODS: Cellular morphometric biomarkers (CMBs) were identified with artificial intelligence technique from TCGA-LGG cohort. Consensus clustering was used to define CMS. Survival analysis was performed to assess the clinical impact of CMBs and CMS. A nomogram was constructed to predict 3- and 5-year overall survival (OS) of LGG patients. Tumor mutational burden (TMB) and immune cell infiltration between subtypes were analyzed using the Mann-Whitney U test. The double-blinded validation for important immunotherapy-related biomarkers was executed using immunohistochemistry (IHC). RESULTS: We developed a machine learning (ML) pipeline to extract CMBs from whole-slide images of tissue histology; identifying and externally validating robust CMS of LGGs in multicenter cohorts. The subtypes had independent predicted OS across all three independent cohorts. In the TCGA-LGG cohort, patients within the poor-prognosis subtype responded poorly to primary and follow-up therapies. LGGs within the poor-prognosis subtype were characterized by high mutational burden, high frequencies of copy number alterations, and high levels of tumor-infiltrating lymphocytes and immune checkpoint genes. Higher levels of PD-1/PD-L1/CTLA-4 were confirmed by IHC staining. In addition, the subtypes learned from LGG demonstrate translational impact on glioblastoma (GBM). CONCLUSIONS: We developed and validated a framework (CMS-ML) for CMS discovery in LGG associated with specific molecular alterations, immune microenvironment, prognosis, and treatment response.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/pathology , Artificial Intelligence , Clinical Relevance , Glioma/pathology , Machine Learning , Tumor Microenvironment
2.
Front Oncol ; 11: 819565, 2021.
Article in English | MEDLINE | ID: mdl-35242697

ABSTRACT

Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan-Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care.

SELECTION OF CITATIONS
SEARCH DETAIL