Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793312

ABSTRACT

This article presents a systematic review of the most cutting-edge research on precast pavement technology for the first time. Firstly, precast pavement is divided into two categories, precast cement concrete pavement and precast carpeted flexible pavement, according to the application of precast technology in pavement engineering. Subsequently, the structural characteristics, advantages, and disadvantages of various precast pavement systems are compared and analyzed; technical problems in precast pavement systems are explained; and future development directions are identified. In addition, the text specifically mentions the great contribution of precast carpeted flexible pavement technology in reducing the harmful effects of asphalt fumes on humans and the environment. This work will promote the application of prefabrication in road engineering and provide suggestions and references for subsequent research.

2.
Materials (Basel) ; 17(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612003

ABSTRACT

The combination of an absorbing structure and a road is a promising strategy for road deicing using microwaves. In this study, cement mortar (CM) specimens containing a carbon fiber screen (CFS) were prepared to concentrate electromagnetic losses on a road surface. The effect of the size and depth of the CFS on the surface heating efficiency of the microwave was studied and optimized, and a microwave deicing experiment was conducted. The results indicated that the destructive interference produced by the CFS led to the effective surface heating of the CM/CFS specimens. The optimal surface heating rate was 0.83 °C/s when the spacing, depth, and width of the CFS were 5.22, 13.31, and 2.80 mm, respectively. The deicing time was shortened by 21.68% from 83 to 65 s, and the heating rate increased by 17.14% from 0.70 to 0.82 °C/s for the specimen with CFS-1, which was 15 mm depth. Our results demonstrate that CM/CFS composite structures can be effectively applied to increase the capacity and accelerate the development of the microwave deicing of roads.

3.
Sensors (Basel) ; 23(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37837017

ABSTRACT

Among the construction processes of Portland cement concrete pavement (PCCP), the curing compound spraying process is one of the most important processes. If the curing compound spraying amount does not meet the standard or if the curing compound is not applied evenly, distresses occur at the early age of construction, ultimately causing deterioration in concrete pavement performance. The purpose of this study is to develop a real-time monitoring system for a curing compound spraying process based on the Internet of Things (IoT) and sensing technologies to improve the construction quality of concrete pavement. To achieve the goal of this research, we conducted various laboratory and field experiments. The curing compound spraying amount and sprayed status were measured and analyzed using flowmeters, image acquisition sensors, and an image processing program, and the data were provided to workers in real time and simultaneously transmitted to the IoT cloud to form a database. From this study, it is confirmed that the IoT-technology-based curing compound spraying amount and sprayed status monitoring systems can be successfully established to manage construction quality related to the curing of concrete pavement.

4.
Materials (Basel) ; 16(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629934

ABSTRACT

Airport pavements are prone to early defects during the construction phase, and their early performance during the construction phase is significantly affected by the external temperature field. This article takes the concrete pavement of Xiamen Xiang'an New Airport as an example and uses a three-dimensional (3D) humidity simulation program for cement concrete pavement to study the evolution behavior of the early stage humidity field of the pavement in a humid and hot climate environment. The results indicate that the evolution law of the humidity field of the concrete pavement slab was consistent with the environmental field, presenting a 24 h periodic variation. The environmental field had a significant impact on the humidity of the surface layer of the pavement slab, and the humidity decreased rapidly with time. There was a humidity gradient on both the horizontal plane and the cutting plane of the slab, the horizontal humidity was concentrated from the boundary into the middle of the slab, and the sectional humidity was concentrated from the top to the bottom of the slab. Environmental parameters, construction parameters, and material and structural parameters all influenced humidity through humidity exchange or by changing the saturated vapor pressure inside the slab. The humidity field was most sensitive to environmental humidity and maintenance methods, but less sensitive to material parameters and structural parameters. Through analysis, it is advisable to avoid hot seasons, choose periods of increased environmental humidity, adopt appropriate maintenance methods during construction to reduce humidity stress on the slab, and therefore decrease early stage deterioration and improve service life.

5.
Article in English | MEDLINE | ID: mdl-27347987

ABSTRACT

This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Construction Materials/analysis , Environmental Monitoring/methods , Greenhouse Effect , China , Construction Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...