Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.019
Filter
1.
Methods Mol Biol ; 2857: 9-14, 2025.
Article in English | MEDLINE | ID: mdl-39348051

ABSTRACT

Telomeres in most somatic cells shorten with each cell division, and critically short telomeres lead to cellular dysfunction, cell cycle arrest, and senescence. Thus, telomere shortening is an important hallmark of human cellular senescence. Quantitative fluorescence in situ hybridization (Q-FISH) using formalin-fixed paraffin-embedded (FFPE) tissue sections allows the estimation of telomere lengths in individual cells in histological sections. In our Q-FISH method, fluorescently labelled peptide nucleic acid (PNA) probes are hybridized to telomeric and centromeric sequences in FFPE human tissue sections, and relative telomere lengths (telomere signal intensities relative to centromere signal intensities) are measured. This chapter describes our Q-FISH protocols for assessing relative telomere lengths in FFPE human tissue sections.


Subject(s)
In Situ Hybridization, Fluorescence , Paraffin Embedding , Peptide Nucleic Acids , Telomere , Humans , In Situ Hybridization, Fluorescence/methods , Telomere/genetics , Telomere/metabolism , Peptide Nucleic Acids/metabolism , Peptide Nucleic Acids/genetics , Paraffin Embedding/methods , Tissue Fixation/methods , Telomere Homeostasis , Centromere/metabolism , Centromere/genetics
2.
Curr Biol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39353426

ABSTRACT

During cell division, chromosomes build kinetochores that attach to spindle microtubules. Kinetochores usually form at the centromeres, which contain CENP-A nucleosomes. The outer kinetochore, which is the core attachment site for microtubules, is composed of the KMN network (Knl1c, Mis12c, and Ndc80c complexes) and is recruited downstream of CENP-A and its partner CENP-C. In C. elegans oocytes, kinetochores have been suggested to form independently of CENP-A nucleosomes. Yet kinetochore formation requires CENP-C, which acts in parallel to the nucleoporin MEL-28ELYS. Here, we used a combination of RNAi and Degron-based depletion of CENP-A (or downstream CENP-C) to demonstrate that both proteins are in fact responsible for a portion of outer kinetochore assembly during meiosis I and are essential for accurate chromosome segregation. The remaining part requires the coordinated action of KNL-2 (ortholog of human M18BP1) and of the nucleoporin MEL-28ELYS. Accordingly, co-depletion of CENP-A (or CENP-C) and KNL-2M18BP1 (or MEL-28ELYS) prevented outer kinetochore assembly in oocytes during meiosis I. We further found that KNL-2M18BP1 and MEL-28ELYS are interdependent for kinetochore localization. Using engineered mutants, we demonstrated that KNL-2M18BP1 recruits MEL-28ELYS at meiotic kinetochores through a specific N-terminal domain, independently of its canonical CENP-A loading factor activity. Finally, we found that meiosis II outer kinetochore assembly was solely dependent on the canonical CENP-A/CENP-C pathway. Thus, like in most cells, outer kinetochore assembly in C. elegans oocytes depends on centromeric chromatin. However, during meiosis I, an additional KNL-2M18BP1 and MEL-28ELYS pathway acts in a non-redundant manner and in parallel to canonical centromeric chromatin.

3.
Med Oncol ; 41(11): 254, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352464

ABSTRACT

Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.


Subject(s)
Carcinogenesis , Centromere , Chromosomal Instability , Neoplasms , Humans , Chromosomal Instability/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Centromere/genetics , Centromere/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Animals , Aneuploidy
4.
New Phytol ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329317

ABSTRACT

Centromeres are specific regions of the chromosomes that play a pivotal role in the segregation of chromosomes, by facilitating the loading of the kinetochore, which forms the link between the chromosomes to the spindle fibres during cell division. In plants and animals, these regions often form megabase-scale loci of tandemly repeated DNA sequences, which have presented a challenge to genomic studies even in model species. The functional designation of centromeres is determined epigenetically by the incorporation of a centromere-specific variant of histone H3. Recent developments in long-read sequencing technology have allowed the assembly of these regions for the first time and have prompted a reassessment of fidelity of centromere function and the evolutionary dynamics of these regions.

5.
PeerJ ; 12: e17864, 2024.
Article in English | MEDLINE | ID: mdl-39221285

ABSTRACT

Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromosome Segregation , DNA Topoisomerases, Type I , Meiosis , Arabidopsis/genetics , Arabidopsis/enzymology , Meiosis/physiology , Meiosis/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Recombination, Genetic , Mutation
6.
Immunol Rev ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248128

ABSTRACT

Systemic sclerosis (SSc) is a severe autoimmune disease characterized by vasculopathy, fibrosis, and dysregulated immunity, with hallmark autoantibodies targeting nuclear antigens such as centromere protein (ACA) and topoisomerase I (ATA). These autoantibodies are highly prevalent and disease-specific, rarely coexisting, thus serving as crucial biomarkers for SSc diagnosis. Despite their diagnostic value, their roles in SSc pathogenesis remain unclear. This review summarizes current literature on ACA and ATA in SSc, comparing them to autoantibodies in other rheumatic diseases to elucidate their potential pathogenic roles. Similarities are drawn with anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis, particularly regarding disease specificity and minimal pathogenic impact of antigen binding. In addition, differences between ANA and ACPA in therapeutic responses and Fab glycosylation patterns are reviewed. While ACA and ATA are valuable for disease stratification and monitoring activity, understanding their origins and the associated B cell responses is critical for advancing therapeutic strategies for SSc.

7.
Cell ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39305902

ABSTRACT

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.

8.
Clin Exp Med ; 24(1): 221, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287841

ABSTRACT

The aim of this study is to investigate salivary gland involvement in patients with anti-centromere antibody (ACA)-positive primary Sjögren's syndrome (pSS). We retrospectively evaluated 134 patients with pSS. Patients were divided into four groups based on the results of ACA and SSA antibodies. We compared clinical manifestations, laboratory findings, salivary gland shear wave elastography, minor salivary gland biopsy results, and EULAR Sjögren's syndrome disease activity index (ESSDAI) scores among the four groups. A total of 134 patients were classified as having pSS and divided into three groups based on serum ACA and anti-SSA antibody status: ACA + SSA + , ACA + SSA-, ACA-SSA + , and seronegative. The primary analysis focused on comparing the clinical and SWE findings between the ACA + SSA + and ACA + SSA- groups. In the double-positive group, SWE revealed fewer minor salivary glands along with higher mean (Emean) and maximum (Emax) values of Young's moduli than those in the ACA-negative group. Patients in the positive group had increased occurrence of Raynaud's phenomenon, liver involvement, and a higher incidence of malignancy (P < 0.05). ACA-positive pSS patients are a subgroup with different clinical manifestations and more pronounced involvement of the minor salivary glands. SWE findings revealed that ACA-positive patients exhibit significantly higher mean and maximum stiffness values compared to ACA-negative patients, indicating more extensive glandular fibrosis and involvement. These results underscore the utility of SWE as a valuable method for evaluating salivary gland pathology and supporting the stratification of pSS patients.


Subject(s)
Antibodies, Antinuclear , Elasticity Imaging Techniques , Salivary Glands, Minor , Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnostic imaging , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Retrospective Studies , Female , Elasticity Imaging Techniques/methods , Middle Aged , Male , Salivary Glands, Minor/pathology , Salivary Glands, Minor/diagnostic imaging , Antibodies, Antinuclear/blood , Adult , Aged , Centromere/immunology , Biopsy
9.
Curr Biol ; 34(17): 3881-3893.e5, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39127048

ABSTRACT

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.


Subject(s)
Kinetochores , Kluyveromyces , Kluyveromyces/cytology , Kinetochores/chemistry , Kinetochores/metabolism , Kinetochores/ultrastructure , Microtubule-Associated Proteins/analysis , Fungal Proteins/analysis , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microtubules/metabolism , Electron Microscope Tomography
10.
Mob DNA ; 15(1): 16, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103880

ABSTRACT

BACKGROUND: Centromere function is highly conserved across eukaryotes, but the underlying centromeric DNA sequences vary dramatically between species. Centromeres often contain a high proportion of repetitive DNA, such as tandem repeats and/or transposable elements (TEs). Einkorn wheat centromeres lack tandem repeat arrays and are instead composed mostly of the two long terminal repeat (LTR) retrotransposon families RLG_Cereba and RLG_Quinta which specifically insert in centromeres. However, it is poorly understood how these two TE families relate to each other and if and how they contribute to centromere function and evolution. RESULTS: Based on conservation of diagnostic motifs (LTRs, integrase and primer binding site and polypurine-tract), we propose that RLG_Cereba and RLG_Quinta are a pair of autonomous and non-autonomous partners, in which the autonomous RLG_Cereba contributes all the proteins required for transposition, while the non-autonomous RLG_Quinta contributes GAG protein. Phylogenetic analysis of predicted GAG proteins showed that the RLG_Cereba lineage was present for at least 100 million years in monocotyledon plants. In contrast, RLG_Quinta evolved from RLG_Cereba between 28 and 35 million years ago in the common ancestor of oat and wheat. Interestingly, the integrase of RLG_Cereba is fused to a so-called CR-domain, which is hypothesized to guide the integrase to the functional centromere. Indeed, ChIP-seq data and TE population analysis show only the youngest subfamilies of RLG_Cereba and RLG_Quinta are found in the active centromeres. Importantly, the LTRs of RLG_Quinta and RLG_Cereba are strongly associated with the presence of the centromere-specific CENH3 histone variant. We hypothesize that the LTRs of RLG_Cereba and RLG_Quinta contribute to wheat centromere integrity by phasing and/or placing CENH3 nucleosomes, thus favoring their persistence in the competitive centromere-niche. CONCLUSION: Our data show that RLG_Cereba cross-mobilizes the non-autonomous RLG_Quinta retrotransposons. New copies of both families are specifically integrated into functional centromeres presumably through direct binding of the integrase CR domain to CENH3 histone variants. The LTRs of newly inserted RLG_Cereba and RLG_Quinta elements, in turn, recruit and/or phase new CENH3 deposition. This mutualistic interplay between the two TE families and the plant host dynamically maintains wheat centromeres.

11.
Mol Cell Biol ; : 1-14, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135477

ABSTRACT

Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18ß with CENP-A specific chaperone HJURP. Cellular levels of Mis18ß are regulated by ß-transducin repeat containing protein (ß-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in ß-TrCP-mediated proteolysis of Mis18ß contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in ß-TrCP depleted cells is dependent on high levels of Mis18ß as depletion of Mis18ß suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18ß alone. In summary, our results show that ß-TrCP-mediated degradation of Mis18ß prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18ß may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.

12.
Ann Bot ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196767

ABSTRACT

BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analyzed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes, and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potenatially also influencing the process of post-polyploid diploidization. We propose a model which in a single famework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes, and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.

13.
J Cell Sci ; 137(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39037215

ABSTRACT

Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, although the specific mechanisms are not fully understood. Here, we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. Knockdown of CSR-1 does not affect mRNA and protein levels of the centromeric histone H3 variant and CENP-A homolog HCP-3 but does increase the localization of HCP-3 and some kinetochore proteins to the mitotic chromosomes. Such elevation of HCP-3 chromatin localization depends on EGO-1, which is an upstream factor in the CSR-1 RNA interference (RNAi) pathway, and PIWI domain activity of CSR-1. Our results suggest that CSR-1 restricts the level of HCP-3 at the holocentromeres, prevents erroneous kinetochore assembly and thereby promotes accurate chromosome segregation. Our work sheds light on the role of CSR-1 in regulating deposition of HCP-3 on chromatin and centromere function in embryos.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Centromere Protein A , Centromere , Chromosome Segregation , Kinetochores , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Centromere Protein A/metabolism , Centromere Protein A/genetics , Kinetochores/metabolism , Centromere/metabolism , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Mitosis , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , RNA Interference , Histones/metabolism , Histones/genetics , Chromatin/metabolism , RNA-Dependent RNA Polymerase
14.
Curr Biol ; 34(15): 3416-3428.e4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39043187

ABSTRACT

Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype. We determined that deletion and overexpression of spindle-related genes are detrimental to the growth of strains with two chromosomes, suggesting that mega chromosomes exert altered demands on the spindle. Using confocal microscopy, we demonstrate that cells with fewer but longer chromosomes have smaller spindle pole bodies, fewer microtubules, and longer spindles. Moreover, using electron tomography and confocal imaging, we observe elongated, bent anaphase spindles with fewer core microtubules in strains with mega chromosomes. Cells harboring mega chromosomes grow more slowly, are delayed in mitosis, and a subset struggle to complete chromosome segregation. We propose that the karyotype of the cell dictates the microtubule number, type, spindle pole body size, and spindle length, subsequently influencing the dynamics of mitosis, such as the rate of spindle elongation and the velocity of pole separation. Taken together, our results suggest that mitotic spindles are highly plastic ultrastructures that can accommodate and adjust to a variety of karyotypes, even within a species.


Subject(s)
Saccharomyces cerevisiae , Spindle Apparatus , Spindle Apparatus/metabolism , Saccharomyces cerevisiae/genetics , Microtubules/metabolism , Chromosome Segregation , Mitosis , Chromosomes, Fungal/genetics , Karyotype
15.
Cell Biol Int ; 48(8): 1212-1222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946594

ABSTRACT

JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates ß-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.


Subject(s)
DNA, Satellite , DNA-Binding Proteins , Heat-Shock Response , Animals , Humans , Mice , Centromere/metabolism , Centromere Protein B/metabolism , Centromere Protein B/genetics , DNA, Satellite/genetics , DNA, Satellite/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , HeLa Cells , Protein Binding
16.
Bioessays ; 46(9): e2400056, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072829

ABSTRACT

X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.


Subject(s)
Centromere , Chromosomes, Human, X , Meiosis , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Centromere/genetics , Chromosomes, Human, X/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Prevalence , X Chromosome Inactivation/genetics
17.
New Phytol ; 243(6): 2214-2234, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39039772

ABSTRACT

Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.


Subject(s)
Arabidopsis , Centromere , Genomic Instability , Meiosis , Ploidies , Ultraviolet Rays , Meiosis/radiation effects , Meiosis/genetics , Centromere/genetics , Centromere/radiation effects , Genomic Instability/radiation effects , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/growth & development , Arabidopsis/physiology , Germ Cells, Plant/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/metabolism , Spindle Apparatus/radiation effects
18.
Cell Genom ; 4(8): 100626, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39084227

ABSTRACT

Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a "homogenizing" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.


Subject(s)
Centromere , Evolution, Molecular , Papaver , Centromere/genetics , Papaver/genetics , Genetic Speciation , Chromosomes, Plant/genetics , DNA, Satellite/genetics , Karyotype
19.
Genetics ; 228(1)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38984710

ABSTRACT

Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to noncentromeric regions contributes to chromosomal instability in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers are associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and chromosomal instability under normal physiological conditions. Mck1-mediated phosphorylation of Skp, Cullin, F-box-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4, and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus sites (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, chromosomal instability, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the chromosomal instability phenotype of GAL-cse4-3A strain, suggesting that the chromosomal instability phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and chromosomal instability. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.


Subject(s)
Centromere Protein A , Chromosomal Instability , Chromosomal Proteins, Non-Histone , Proteolysis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Centromere Protein A/metabolism , Centromere Protein A/genetics , Phosphorylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Centromere/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases
20.
Transl Cancer Res ; 13(6): 2812-2824, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988917

ABSTRACT

Background: Centromere protein U (CENPU) is key for mitosis in the carcinogenesis of cancers. However, the roles of CENPU have not been inspected in nasopharyngeal carcinoma (NPC). Thus, we aimed to explore the functions and mechanisms of CENPU in NPC. Methods: Expression of CENPU was evaluated by real-time quantitative polymerase chain reaction, western blotting and immunohistochemistry. The biological functions of CENPU were evaluated in vitro and in vivo. Gene chip analysis, ingenuity pathway analysis, and coimmunoprecipitation experiments were used to explore the mechanisms of CENPU. Results: CENPU was highly expressed in NPC. High expression of CENPU was associated with advanced tumor, node and metastasis (TNM) stage and poor overall survival. Cox regression analysis demonstrated that CENPU expression was an independent prognostic factor in NPC. Knockdown of CENPU inhibited proliferation and migration in vitro and in vivo. Knockdown of CENPU upregulated dual specificity phosphatase 6 (DUSP6) expression. The expression of CNEPU was inversely correlated with the expression of DUSP6 in NPC tissues. Mechanistic studies confirmed that CENPU increased the activation of the ERK1/2 and p38 signaling pathways by suppressing the expression of DUSP6. Conclusions: CENPU acts as an oncogene in NPC by interacting with DUSP6, and may represent a promising prognostic biomarker for patients with NPC.

SELECTION OF CITATIONS
SEARCH DETAIL