Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1335371, 2024.
Article in English | MEDLINE | ID: mdl-39109081

ABSTRACT

Objective: We compared peripheral blood (PBL) chemokine ligand/receptor profiles in children and adolescents with type 1 diabetes mellitus (T1D) or obesity (OB) (both involving inflammation and vascular complications) to identify their associations with cardiometabolic risk factors. Materials and methods: PBL samples from children and adolescents (12-18 years) included: healthy controls (n=29), patients with T1D (n=31) and OB subjects (n=34). Frequency of mononuclear cell populations and chemokine receptor expression (CCR2, CCR4, CXCR3, CXCR4) were determined by flow cytometry. Chemokine levels of CCL2, CCL5, CXCL10 and CXCL11 were measured by bead-based assay and CXCL12 by ELISA. Data were correlated with cardiovascular, metabolic and inflammatory parameters. Results: The proportion of CD14+ monocytes was higher in T1D, whereas the proportion of CD19+ B lymphocytes was higher and CD3+ T lymphocytes was lower in OB. The level of CCL2 was higher in T1D (241.0 (IQR 189.6-295.3) pg/mL in T1D vs 191.5 (IQR 158.0-254.7) pg/mL in control, p=0.033), CXCL11 was lower in OB (6.6 (IQR 4.9-7.7) pg/mL in OB vs 8.2 (IQR 6.9-11.3) pg/mL in control, p=0.018) and CXCL12 was lower in both diseases (2.0 (IQR 1.8-2.5) ng/mL in T1D, 2.1 (IQR 1.9-2.4) ng/mL in OB vs 2.4 (IQR 2.2-2.5) ng/mL in control, p=0.016). Numerous significant associations were found for chemokine ligand/receptor profiles and clinical data. Among these, we are suggesting the most important indicators of cardiometabolic risk in T1D: positive associations of CCR2+ monocytes with blood pressure and CCL12 levels with urine albumin-to-creatinine ratio (ACR), inverse association of CXCR3+ B lymphocytes with AST but positive with triglycerides; and OB: positive associations of CXCL12 levels with triglycerides and AST/ALT, inverse association of CCR4+ and CXCR3+ monocytes with ACR. Both diseases share positive associations for CCR4+ T lymphocytes and blood pressure, inverse associations of CXCR4+ subsets with ACR and CXCR3+ T lymphocytes with lipid profile. Conclusion: Significantly changed chemokine ligand/receptor profiles were found in both T1D and OB even at a young age. Although different associations with cardiometabolic risk factors indicate disease-specific changes, overlapping pattern was found for the associations between CCR4+ T lymphocytes and vascular inflammation, CXCR4+ subsets and albuminuria as well as CXCR3+ T lymphocytes and dyslipidemia. Thus, chemokine axes might present potential therapeutic targets for disease-related morbidity.


Subject(s)
Chemokines , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Adolescent , Child , Male , Female , Chemokines/blood , Chemokines/metabolism , Biomarkers/blood , Cardiometabolic Risk Factors , Obesity/metabolism , Obesity/blood , Obesity/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/blood , Case-Control Studies , Pediatric Obesity/blood , Pediatric Obesity/metabolism
2.
Cell ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39089252

ABSTRACT

The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.

3.
Nat Cardiovasc Res ; 3: 221-242, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-39044999

ABSTRACT

CCL17 is produced by conventional dendritic cells (cDCs), signals through CCR4 on regulatory T cells (Tregs), and drives atherosclerosis by suppressing Treg functions through yet undefined mechanisms. Here we show that cDCs from CCL17-deficient mice display a pro-tolerogenic phenotype and transcriptome that is not phenocopied in mice lacking its cognate receptor CCR4. In the plasma of CCL17-deficient mice, CCL3 was the only decreased cytokine/chemokine. We found that CCL17 signaled through CCR8 as an alternate high-affinity receptor, which induced CCL3 expression and suppressed Treg functions in the absence of CCR4. Genetic ablation of CCL3 and CCR8 in CD4+ T cells reduced CCL3 secretion, boosted FoxP3+ Treg numbers, and limited atherosclerosis. Conversely, CCL3 administration exacerbated atherosclerosis and restrained Treg differentiation. In symptomatic versus asymptomatic human carotid atheroma, CCL3 expression was increased, while FoxP3 expression was reduced. Together, we identified a non-canonical chemokine pathway whereby CCL17 interacts with CCR8 to yield a CCL3-dependent suppression of atheroprotective Tregs.

4.
Expert Rev Clin Immunol ; 20(8): 849-871, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021098

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED: Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION: In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , T-Lymphocytes/immunology
5.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892268

ABSTRACT

The cellular distribution and changes in CX3CL1/fractalkine and its receptor CX3CR1 protein levels in the trigeminal subnucleus caudalis (TSC) of rats with unilateral infraorbital nerve ligation (IONL) were investigated on postoperation days 1, 3, 7, and 14 (POD1, POD3, POD7, and POD14, respectively) and compared with those of sham-operated and naïve controls. Behavioral tests revealed a significant increase in tactile hypersensitivity bilaterally in the vibrissal pads of both sham- and IONL-operated animals from POD1 to POD7, with a trend towards normalization in sham controls at POD14. Image analysis revealed increased CX3CL1 immunofluorescence (IF) intensities bilaterally in the TSC neurons of both sham- and IONL-operated rats at all survival periods. Reactive astrocytes in the ipsilateral TSC also displayed CX3CL1-IF from POD3 to POD14. At POD1 and POD3, microglial cells showed high levels of CX3CR1-IF, which decreased by POD7 and POD14. Conversely, CX3CR1 was increased in TSC neurons and reactive astrocytes at POD7 and POD14, which coincided with high levels of CX3CL1-IF and ADAM17-IF. This indicates that CX3CL1/CX3CR1 may be involved in reciprocal signaling between TSC neurons and reactive astrocytes. The level of CatS-IF in microglial cells suggests that soluble CX3CL1 may be involved in neuron-microglial cell signaling at POD3 and POD7, while ADAM17 allows this release at all studied time points. These results indicate an extended CX3CL1/CX3CR1 signaling axis and its role in the crosstalk between TSC neurons and glial cells during the development of trigeminal neuropathic pain.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Signal Transduction , Animals , Chemokine CX3CL1/metabolism , Rats , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Male , Microglia/metabolism , Trigeminal Neuralgia/metabolism , Trigeminal Neuralgia/pathology , Neurons/metabolism , Astrocytes/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Rats, Sprague-Dawley
6.
J Autoimmun ; 147: 103275, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936146

ABSTRACT

OBJECTIVE: This study aims to elucidate the significance of VNN2 expression in peripheral blood monocytes and its clinical relevance in primary Sjögren's syndrome (pSS). METHODS: We investigated VNN2 expression by analyzing single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells. Flow cytometry was used to detect and compare VNN2 expression in total monocytes, classical monocytes (cMo), intermediate monocytes (iMo) and non-classical monocytes (ncMo). Additionally, we examined the expression of HLA, ICAM1, CD62L, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 in VNN2+ and VNN2- cells. We analyzed the correlation between VNN2 expression and clinical indicators and assessed the clinical utility of VNN2+ monocytes in pSS diagnosis using receiver operating characteristic curves. RESULTS: We observed high VNN2 expression in monocytes, with significantly higher levels in CD14++ monocytes compared to ncMo. VNN2+ monocytes exhibited decreased expression of HLA and CD62L and increased expression of ICAM1, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 compared to VNN2- monocytes. Although scRNA-seq data showed that VNN2 mRNA was upregulated, cell surface expression of VNN2 was decreased in monocytes from pSS patients compared to healthy controls. The reduced levels of VNN2+ monocyte subpopulations in pSS patients were negatively correlated with anti-ribosome antibody levels and positively correlated with complement 4 levels. Detection of VNN2 expression in monocytes can aid in the auxiliary diagnosis of pSS. CONCLUSION: Monocytes expressing cell surface VNN2 are significantly reduced in pSS patients. This suggests a potential role for VNN2 in pSS development and its potential use as a diagnostic marker for pSS.


Subject(s)
Monocytes , Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/immunology , Sjogren's Syndrome/blood , Sjogren's Syndrome/metabolism , Monocytes/metabolism , Monocytes/immunology , Female , Male , Middle Aged , Biomarkers , Adult , Aged
7.
Clin Immunol ; 264: 110267, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825071

ABSTRACT

Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19 , Interferon-gamma , Receptors, CCR6 , Receptors, CXCR3 , SARS-CoV-2 , Humans , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , CD4-Positive T-Lymphocytes/immunology , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , SARS-CoV-2/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Male , Female , Middle Aged , Aged , Adult
8.
Cytokine ; 181: 156684, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936205

ABSTRACT

As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.


Subject(s)
CX3C Chemokine Receptor 1 , Purpura, Thrombocytopenic, Idiopathic , Receptors, CXCR3 , Receptors, CXCR5 , Humans , Receptors, CXCR3/metabolism , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , CX3C Chemokine Receptor 1/metabolism , Male , Receptors, CXCR5/metabolism , Female , Adult , Middle Aged , Platelet Count , Platelet Factor 4/blood , Platelet Factor 4/metabolism , Aged , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
9.
Cancer Manag Res ; 16: 403-420, 2024.
Article in English | MEDLINE | ID: mdl-38736589

ABSTRACT

Background: Chemokines and chemokine receptors (CCRs) are involved in a variety of anti-tumour and pro-tumour immune processes in vivo, such as angiogenesis, metastasis, proliferation and invasiveness, and influence patient prognosis and response to therapy. Methods: CCRs differentially expressed in HCC and associated with prognosis were extracted from TCGA and GEO databases, and the obtained CCRs were then used to construct signature genes, and the signature gene were selected for expression validation as well as functional experiments to explore the role of CCRs in the treatment and prognosis of HCC. Results: We constructed a prognostic model including five CCRs (CCL20, CCL23, CCR3, CCR10, and CXCR3) and validated the expression of signature genes. The model's risk score is an independent prognostic factor for HCC. We have also developed prognostic model nomograms for clinical use. In addition, we validated that CCR3 expression is associated with poor prognosis in HCC, and the proliferation and migration ability of HCC cells was significantly inhibited after interfering with the expression of CCR3 in MHCC-LM3. We also looked at differences in pathway enrichment, immune infiltration and immune checkpoints. Finally, we found that risk scores were also correlated with drug sensitivity, the high-risk group had a better sensitivity to sorafenib. Conclusion: The CCRs-related gene signature may better assess HCC prognosis and response to immunotherapy and tyrosine kinase inhibitors such as sorafenib in HCC, providing prospective solutions for diagnosis and treatment.

10.
Front Immunol ; 15: 1377913, 2024.
Article in English | MEDLINE | ID: mdl-38799420

ABSTRACT

Introduction: The atypical chemokine receptor 2 (ACKR2) is a chemokine scavenger receptor, which limits inflammation and organ damage in several experimental disease models including kidney diseases. However, potential roles of ACKR2 in reducing inflammation and tissue injury in autoimmune disorders like systemic lupus erythematosus (SLE) and lupus nephritis are unknown, as well as its effects on systemic autoimmunity. Methods: To characterize functional roles of ACKR2 in SLE, genetic Ackr2 deficiency was introduced into lupus-prone C57BL/6lpr (Ackr2-/- B6lpr) mice. Results: Upon inflammatory stimulation in vitro, secreted chemokine levels increased in Ackr2 deficient tubulointerstitial tissue but not glomeruli. Moreover, Ackr2 expression was induced in kidneys and lungs of female C57BL/6lpr mice developing SLE. However, female Ackr2-/- B6lpr mice at 28 weeks of age showed similar renal functional parameters as wildtype (WT)-B6lpr mice. Consistently, assessment of activity and chronicity indices for lupus nephritis revealed comparable renal injury. Interestingly, Ackr2-/- B6lpr mice showed significantly increased renal infiltrates of CD3+ T and B cells, but not neutrophils, macrophages or dendritic cells, with T cells predominantly accumulating in the tubulointerstitial compartment of Ackr2-/- B6lpr mice. In addition, histology demonstrated significantly increased peribronchial lung infiltrates of CD3+ T cells in Ackr2-/- B6lpr mice. Despite this, protein levels of pro-inflammatory chemokines and mRNA expression of inflammatory mediators were not different in kidneys and lungs of WT- and Ackr2-/- B6lpr mice. This data suggests compensatory mechanisms for sufficient chemokine clearance in Ackr2-deficient B6lpr mice in vivo. Analysis of systemic autoimmune responses revealed comparable levels of circulating lupus-associated autoantibodies and glomerular immunoglobulin deposition in the two genotypes. Interestingly, similar to kidney and lung CD4+ T cell numbers and activation were significantly increased in spleens of Ackr2-deficient B6lpr mice. In lymph nodes of Ackr2-/- B6lpr mice abundance of activated dendritic cells decreased, but CD4+ T cell numbers were comparable to WT. Moreover, increased plasma levels of CCL2 were present in Ackr2-/- B6lpr mice, which may facilitate T cell mobilization into spleens and peripheral organs. Discussion: In summary, we show that ACKR2 prevents expansion of T cells and formation of tertiary lymphoid tissue, but is not essential to limit autoimmune tissue injury in lupus-prone B6lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes , Tertiary Lymphoid Structures , Animals , Mice , Female , Lupus Erythematosus, Systemic/immunology , Tertiary Lymphoid Structures/immunology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Disease Models, Animal , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Autoimmunity , Duffy Blood-Group System/genetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Cell Proliferation , Chemokine Receptor D6
11.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732237

ABSTRACT

NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously.


Subject(s)
Chemokine CXCL12 , Protein Binding , Receptors, CXCR3 , Receptors, CXCR4 , Receptors, CXCR , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Receptors, CXCR/genetics , Chemokine CXCL12/metabolism , Receptors, CXCR3/metabolism , Bioluminescence Resonance Energy Transfer Techniques/methods , Ligands , Fluorescent Dyes/chemistry
12.
Nucl Med Biol ; 134-135: 108912, 2024.
Article in English | MEDLINE | ID: mdl-38691942

ABSTRACT

Chemokine receptors are important components of cellular signaling and play a critical role in directing leukocytes during inflammatory reactions. Their importance extends to numerous pathological processes, including tumor differentiation, angiogenesis, metastasis, and associations with multiple inflammatory disorders. The necessity to monitor the in vivo interactions of cellular chemokine receptors has been driven the recent development of novel positron emission tomography (PET) imaging agents. This imaging modality provides non-invasive localization and quantitation of these receptors that cannot be provided through blood or tissue-based assays. Herein, we provide a review of PET imaging of the chemokine receptors that have been imaged to date, namely CXCR3, CXCR4, CCR2, CCR5, and CMKLR1. The quantification of these receptors can aid in understanding various diseases, including cancer, atherosclerosis, idiopathic pulmonary fibrosis, and acute respiratory distress syndrome. The development of specific radiotracers targeting these receptors will be discussed, including promising results for disease diagnosis and management. However, challenges persist in fully translating these imaging advancements into practical therapeutic applications. Given the success of CXCR4 PET imaging to date, future research should focus on clinical translation of these approaches to understand their role in the management of a wide variety of diseases.


Subject(s)
Positron-Emission Tomography , Receptors, Chemokine , Humans , Positron-Emission Tomography/methods , Animals , Receptors, Chemokine/metabolism
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612597

ABSTRACT

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Subject(s)
Analgesics, Opioid , Imidazoles , Naphthalenes , Nitro Compounds , Sulfoxides , Trauma, Nervous System , Humans , Animals , Mice , Rats , Maraviroc , Central Nervous System , Peripheral Nervous System
14.
Mol Ther Oncol ; 32(1): 200777, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596297

ABSTRACT

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells are a promising immunotherapy for solid cancers; however, their effectiveness against pancreatic cancer is limited by the immunosuppressive tumor microenvironment. In particular, low NK cell infiltration poses a major obstacle that reduces cytotoxicity. The current study aimed to enhance the tumor-homing capacity of CAR-NK cells by targeting the chemokine-chemokine receptor axis between NK and pancreatic cancer cells. To this end, data from a chemokine array and The Cancer Genome Atlas pan-cancer cohort were analyzed. Pancreatic cancer cells were found to secrete high levels of ligands for C-X-C motif receptor 1 (CXCR1) and CXCR2. Subsequently, we generated anti-mesothelin CAR-NK cells incorporating CXCR1 or CXCR2 and evaluated their tumor-killing abilities in 2D cancer cell co-culture and 3D tumor-mimetic organoid models. CAR-NK cells engineered with CXCR2 demonstrated enhanced tumor killing and strong infiltration of tumor sites. Collectively, these findings highlight the potential of CXCR2-augmented CAR-NK cells as a clinically relevant modality for effective pancreatic cancer treatment. By improving their infiltration and tumor-killing capabilities, these CXCR2-augmented CAR-NK cells have the potential to overcome the challenges posed by the immunosuppressive tumor microenvironment, providing improved therapeutic outcomes.

15.
Reprod Toxicol ; 126: 108599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679149

ABSTRACT

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Subject(s)
Aflatoxin B1 , Autism Spectrum Disorder , Brain , Disease Models, Animal , Spleen , Animals , Autism Spectrum Disorder/chemically induced , Aflatoxin B1/toxicity , Brain/metabolism , Brain/drug effects , Spleen/drug effects , Spleen/metabolism , Male , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Mice , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism
16.
Biomolecules ; 14(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38540757

ABSTRACT

Chemokines are cytokines with chemoattractant capacities that exert their physiological functions through the binding of chemokine receptors. Thus, chemokine and receptor complexes exert important roles in regulating development and homeostasis during routine immune surveillance and inflammation. Compared to mammals, the physiology and structure of chemokine receptors in fish have not been systematically studied. Furthermore, the salmonid-specific whole genome duplication has significantly increased the number of functional paralogs of chemokine receptors. In this context, in the current study, trout exhibited 17 cxcr genes, including 12 newly identified and 5 previously identified receptors. Interestingly, gene expression of brain cxcr1 and cxcr4, kidney cxcr3 and cxcr4, and spleen cxcr3, cxcr4, and cxcr5 subtypes were altered by bacterial infection, whereas brain cxcr1, kidney cxcr1 and cxcr7, and liver cxcr2, cxcr3, and cxcr4 subtypes were changed in response to environmental changes. Based on protein structures predicted by ColabFold, the conserved amino acids in binding pockets between trout CXCR4.1 subtypes and human CXCR4 were also analyzed. Our study is valuable from a comparative point of view, providing new insights into the identification and physiology of salmonid chemokine receptors.


Subject(s)
Oncorhynchus mykiss , Animals , Humans , Oncorhynchus mykiss/genetics , Genome , Signal Transduction , Mammals/genetics
17.
Eur J Pharmacol ; 967: 176357, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309677

ABSTRACT

The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.


Subject(s)
Pancreatic Neoplasms , Receptors, Chemokine , Humans , Receptors, Chemokine/metabolism , Ligands , Proto-Oncogene Proteins c-akt , Chemokines/metabolism , Pancreatic Neoplasms/therapy , Carcinogenesis , Tumor Microenvironment
18.
EBioMedicine ; 100: 104985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306895

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored. METHODS: We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls. We further validated the findings with an in-vitro chemokine-mediated Treg migration assay, immunofluorescent imaging of normal and psoriatic lesional skin and analysed public single-cell RNA-sequencing datasets to expand upon our findings into the local tissue microenvironments. FINDINGS: We discovered an overall decrease in CLAhi Tregs and specifically, CLAhiCCR5+ Tregs in psoriasis. Functional markers CD39 and FoxP3 were elevated in psoriatic Tregs. However, CCR7 expression was significantly increased while CCR4 and CLA expression was reduced in psoriatic Tregs and CLAhi Tregs, which was associated with disease severity. Moreover, psoriatic Tregs revealed increased migratory capacity towards CCR7's ligands, CCL19/CCL21. Interrogation of public single-cell RNA sequencing data confirmed reduced expression of skin-trafficking markers in lesional-skin Tregs compared to non-lesioned skin, further substantiated by immunofluorescent staining. INTERPRETATION: Psoriatic circulating Tregs showed an impaired skin-trafficking phenotype thus leading to insufficient suppression of ongoing inflammation in the lesional skin, expanding upon our current understanding of the impairment of Treg-mediated immunosuppression in psoriasis. FUNDING: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and Information and Communications Technology (2020R1C1C1014513, 2021R1A4A5032185, 2020R1F1A1073692); and the new faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0033).


Subject(s)
Psoriasis , T-Lymphocytes, Regulatory , Humans , Receptors, CCR7/metabolism , Psoriasis/metabolism , Skin/metabolism , Th17 Cells
19.
BMC Med Genomics ; 17(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38169378

ABSTRACT

BACKGROUND: CC chemokine receptors are responsible for regulating the tumor microenvironment (TME) and participating in carcinogenesis and tumor advancement. However, no functional study has investigated CC chemokine receptors in gastric cancer (GC) prognosis, risk, immunotherapy, or other treatments. METHODS: We conducted a bioinformatics analysis on GC data using online databases, including the Human Protein Atlas (HPA), Kaplan-Meier (KM) plotter, GeneMANIA, MethSurv, the University of ALabama at Birmingham CANcer (UALCAN) Data Analysis Portal, Gene Set Cancer Analysis (GSCA), cBioportal, and Tumor IMmune Estimation Resource (TIMER). RESULTS: We noted that CC chemokine receptor expression correlated with survival in GC. CC chemokine receptor expression was also strongly linked to different tumor-infiltrating immune cells. Additionally, CC chemokine receptors were found to be broadly drug-resistant in GC. CONCLUSION: Our study identifed CC chemokine receptor expression helped in predicting the prognosis of patients diagnosed with GC. The expression level of the CC chemokine receptors was also positively related to multiple tumor-infiltrating lymphocytes (TILs). These findings provide evidence to monitor patients with GC using CC chemokine receptors, which can be used as an effective biomarker for predicting the disease prognosis and be regarded as a therapeutic target for modulating the tumor immune microenvironment.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Prognosis , Carcinogenesis , Receptors, CCR , Tumor Microenvironment
20.
Cell Signal ; 113: 110966, 2024 01.
Article in English | MEDLINE | ID: mdl-37949381

ABSTRACT

Cancer metastasis is the leading cause of cancer related mortality. Chemokine receptors and proteins in their downstream signalling axis represent desirable therapeutic targets for the prevention of metastasis. Despite this, current therapeutics have experienced limited success in clinical trials due to a lack of insight into the downstream signalling pathway of specific chemokine receptor cascades in different tumours. In this study, we investigated the role of protein kinase C (PKC) and protein kinase D (PKD) in CXCL12 and CXCL13 stimulated SK-MEL-28 (malignant melanoma) and THP-1 (acute monocytic leukaemia) cell migration. While PKC and PKD had no active role in CXCL12 or CXCL13 stimulated THP-1 cell migration, PKC and PKD inhibition reduced CXCL12 stimulated migration and caused profound effects upon the cytoskeleton of SK-MEL-28 cells. Furthermore, only PKC and not PKD inhibition reduced CXCL13 stimulated migration in SK-MEL-28 cells however PKC inhibition failed to stimulate any changes to the actin cytoskeleton. These findings indicate that PKC inhibitors would be a useful therapeutic for the prevention of both CXCL12 and CXCL13 stimulated migration and PKD inhibitors for CXCL12 stimulated migration in malignant melanoma.


Subject(s)
Melanoma , Protein Kinase C , Humans , Protein Kinase C/metabolism , Chemokine CXCL12/metabolism , Signal Transduction , Cell Movement , Receptors, Chemokine , Protein Kinase Inhibitors/pharmacology , Chemokine CXCL13/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL