Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; 30(47): e202401698, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38899378

ABSTRACT

An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.

2.
Chem Pharm Bull (Tokyo) ; 69(6): 516-525, 2021.
Article in English | MEDLINE | ID: mdl-34078797

ABSTRACT

Catalytic chemoselective reactions of innately less reactive functionalities over more reactive functionalities are described. A cooperative catalyst comprising a soft Lewis acid/hard Brønsted base enabled chemoselective activation of a hydroxyl group over an amino group, allowing for nucleophilic addition to electron-deficient olefins. The reaction could be applicable for a variety of amino alcohols, including pharmaceuticals, without requiring a tedious protection-deprotection process. Chemoselective enolization and subsequent α-functionalization of carboxylic acid derivatives were also achieved by a redox active catalyst through the radical process, providing unnatural α-amino/hydroxy acid derivatives bearing a complex carbon framework and a diverse set of functionalities. The present chemoselective catalysis described herein offers new opportunities to expand the chemical space for innovative drug discovery research.


Subject(s)
Alkenes/chemistry , Amino Alcohols/chemical synthesis , Carboxylic Acids/chemical synthesis , Drug Development , Lewis Acids/chemistry , Amino Alcohols/chemistry , Carboxylic Acids/chemistry , Catalysis , Molecular Structure
3.
Chemistry ; 27(41): 10666-10676, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34009699

ABSTRACT

A highly efficient heterogeneous catalyst Pd/Mg2 P2 O7 was fabricated by combining palladium nanoparticles (PdNPs) and mesoporous Mg2 P2 O7 fibers/rods. Mg2 P2 O7 fibers with ultra-high specific surface area were prepared from struvite as templates, which were synthesized from waste water containing N- and P-containing pollutants. This strategy provided a novel pathway for developing advanced catalysts from eutrophication-polluted water. The composite Pd/Mg2 P2 O7 showed brilliant performance in selective hydrogenation of nitro aromatics to give anilines. As an example of nitrobenzene hydrogenation, the conversion to aniline and selectivity were found to reach almost 100 % at a temperature of T=90 °C and under a pressure of P H 2 =2.0 MPa. The superior performance was found to originate from PdNPs, which were boosted by electron transfer afforded by the nanofiber Mg2 P2 O7 supports. The favorable adsorption of withdrawing groups (-NO2 ) was realized by synergistic effects between Pd and oxygen vacancies provided by pyrolysis of struvite. The catalyst remained stable after cycles of reuse with little degradation in catalytic performance.

4.
Angew Chem Int Ed Engl ; 59(51): 23335-23342, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-32931656

ABSTRACT

Protonolysis of [ZnH2 ]n with the conjugated Brønsted acid of the bidentate diamine TMEDA (N,N,N',N'-tetramethylethane-1,2-diamine) and TEEDA (N,N,N',N'-tetraethylethane-1,2-diamine) gave the zinc hydride cation [(L2 )ZnH]+ , isolable either as the mononuclear THF adduct [(L2 )ZnH(thf)]+ [BArF 4 ]- (L2 =TMEDA; BArF 4 - =[B(3,5-(CF3 )2 -C6 H3 )4 ]- ) or as the dimer [{(L2 )Zn)}2 (µ-H)2 ]2+ [BArF 4 ]- 2 (L2 =TEEDA). In contrast to [ZnH2 ]n , the cationic zinc hydrides are thermally stable and soluble in THF. [(L2 )ZnH]+ was also shown to form di- and trinuclear adducts of the elusive neutral [(L2 )ZnH2 ]. All hydride-containing cations readily inserted CO2 to give the corresponding formate complexes. [(TMEDA)ZnH]+ [BArF 4 ]- catalyzed the hydrosilylation of CO2 with tertiary hydrosilanes to give stepwise formoxy silane, methyl formate, and methoxy silane. The unexpected formation of methyl formate was shown to result from the zinc-catalyzed transesterification of methoxy silane with formoxy silane, which was eventually converted into methoxy silane as well.

5.
Angew Chem Int Ed Engl ; 58(22): 7420-7424, 2019 May 27.
Article in English | MEDLINE | ID: mdl-30946520

ABSTRACT

Frustrated Lewis pairs (FLPs) have recently been advanced as efficient metal-free catalysts for catalytic hydrogenation, but their performance in chemoselective hydrogenation, particularly in heterogeneous systems, has not yet been achieved. Herein, we demonstrate that, via tailoring the pore environment within metal-organic frameworks (MOFs), FLPs not only can be stabilized but also can develop interesting performance in the chemoselective hydrogenation of α,ß-unsaturated organic compounds, which cannot be achieved with FLPs in a homogeneous system. Using hydrogen gas under moderate pressure, the FLP anchored within a MOF that features open metal sites and hydroxy groups on the pore walls can serve as a highly efficient heterogeneous catalyst to selectively reduce the imine bond in α,ß-unsaturated imine substrates to afford unsaturated amine compounds.

6.
Angew Chem Int Ed Engl ; 53(6): 1611-5, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24453171

ABSTRACT

A highly chemoselective conjugate addition of alcohols in the presence of amines is described. The cooperative nature of the catalyst enabled chemoselective activation of alcohols over amines, allowing the conjugate addition to soft Lewis basic α,ß-unsaturated nitriles. Divergent transformation of the nitrile functionality highlights the utility of the present catalysis.


Subject(s)
Alcohols/chemistry , Amines/chemistry , Catalysis , Lewis Bases/chemistry , Nitriles/chemistry , Protons
SELECTION OF CITATIONS
SEARCH DETAIL