Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125778

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy is the most common cause of long-term disability in term neonates, and white matter injury is the primary cause of cerebral palsy. Therapies that focus on the neuroprotection of myelination and oligodendrocyte proliferation could potentially ameliorate long-lasting neurological impairments after hypoxic-ischemic encephalopathy. Clemastine, a histamine H1 antagonist, has been shown to exert neuroprotective effects in multiple sclerosis and spinal cord injury by promoting oligodendrogenesis and re-myelination. In this study, we demonstrated the neuroprotective effects of clemastine in our rat model of neonatal hypoxic-ischemic brain injury. Animals received a single intraperitoneal injection of either vehicle or clemastine (10 mg/kg) for 6 consecutive days. Our results showed a significant reduction in white matter loss after treatment, with a clear effect of clemastine on oligodendrocytes, showing a significant increase in the number of Olig2+ cells. We characterized the MAPK/ERK pathway as a potential mechanistic pathway underlying the neuroprotective effects of clemastine. Altogether, our results demonstrate that clemastine is a potential compound for the treatment of hypoxic-ischemic encephalopathy, with a clear neuroprotective effect on white matter injury by promoting oligodendrogenesis.


Subject(s)
Animals, Newborn , Cell Proliferation , Clemastine , Disease Models, Animal , Hypoxia-Ischemia, Brain , MAP Kinase Signaling System , Neuroprotective Agents , Oligodendroglia , Animals , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Rats , Clemastine/pharmacology , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Rats, Sprague-Dawley
2.
Pharmacol Biochem Behav ; 242: 173824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002803

ABSTRACT

Adolescence is a critical period for social experience-dependent oligodendrocyte maturation and myelination. Adolescent stress predisposes to cause irreversible changes in brain structure and function with lasting effects on adulthood or beyond. However, the molecular mechanisms linking adolescent social isolation stress with emotional and social competence remain largely unknown. In our study, we found that social isolation during adolescence leads to anxiety-like behaviors, depression-like behaviors, impaired social memory and altered patterns of social ultrasonic vocalizations in mice. In addition, adolescent social isolation stress induces demyelination in the prefrontal cortex and hippocampus of mice, with decreased myelin-related gene expression and disrupted myelin structure. More importantly, clemastine was sufficient to rescue the impairment of emotional and social memory by promoting remyelination. These findings reveal the demyelination mechanism of emotional and social deficits caused by social isolation stress in adolescence, and provides potential therapeutic targets for treating stress-related mental disorders.


Subject(s)
Clemastine , Demyelinating Diseases , Social Isolation , Stress, Psychological , Animals , Social Isolation/psychology , Mice , Male , Demyelinating Diseases/psychology , Clemastine/pharmacology , Stress, Psychological/psychology , Mice, Inbred C57BL , Hippocampus , Anxiety/psychology , Prefrontal Cortex , Depression/psychology , Emotions , Social Behavior , Myelin Sheath , Behavior, Animal/drug effects
3.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39023360

ABSTRACT

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Subject(s)
Antiprotozoal Agents , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Sphingolipids/metabolism , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hexosyltransferases/antagonists & inhibitors , Leishmania/drug effects , Leishmania/genetics , Leishmania/enzymology , Animals , Leishmania mexicana/drug effects , Leishmania mexicana/genetics , Leishmania mexicana/enzymology , Glycosphingolipids/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
4.
Eur J Pharmacol ; 980: 176851, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084454

ABSTRACT

Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures alongside other neurological comorbidities. Cognitive impairment is the most frequent comorbidity secondary to progressive neurologic changes in epilepsy. Sigma 1 receptors (σ1 receptors) are involved in the neuroprotection and pathophysiology of both conditions and targeting these receptors may have the potential to modulate both seizures and comorbidities. The current research demonstrated the effect of clemastine (10 mg/kg, P.O.), a non-selective σ1 receptor agonist, on pentylenetetrazol (PTZ) (35 mg/kg, i.p., every 48 h for 14 doses)-kindling rats by acting on σ1 receptors through its anti-inflammatory/antioxidant capacity. Clemastine and phenytoin (30 mg/kg, P.O.) or their combination were given once daily. Clemastine treatment showed a significant effect on neurochemical, behavioural, and histopathological analyses through modulation of σ1 receptors. It protected the kindling animals from seizures and attenuated their cognitive impairment in the Morris water maze test by reversing the PTZ hippocampal neuroinflammation/oxidative stress state through a significant increase in inositol-requiring enzyme 1 (IRE1), x-box binding protein 1 (XBP1), along with a reduction of total reactive oxygen species (TROS) and amyloid beta protein (Aß). The involvement of σ1 receptors in the protective effects of clemastine was confirmed by their abrogation when utilizing NE-100, a selective σ1 receptor antagonist. In light of our findings, modulating σ1 receptors emerges as a compelling therapeutic strategy for epilepsy and its associated cognitive impairments. The significant neuroprotective effects observed with clemastine underscore the potential of σ1 receptor-targeted treatments to address both the primary symptoms and comorbidities of neurological disorders.

5.
Mol Cell Oncol ; 11(1): 2351622, 2024.
Article in English | MEDLINE | ID: mdl-38778919

ABSTRACT

Clemastine is an antagonist of histamine H1 receptor may provide benefits in the treatment of osteosarcoma (OS). In the current study, we used hyperthermia approach to sensitize OS cells to clemastine-mediated cell death. Osteosarcoma U-2 OS and Saos-2 cells were treated with clemastine at 37°C, followed by 42°C for 2 h, and released at 37°C for 6 h. The impact of clemastine and hyperthermia on OS cell survival and autophagy-mediated cell death was investigated. Exposure of U-2 OS and Saos-2 cells to clemastine and hyperthermia (42°C) inhibited dose-dependent clemastine-mediated cell survival by increasing cell apoptosis. Hyperthermia and clemastine exposure modulated inflammatory and unfolded protein response (UPR) signaling differentially in U-2 OS and Saos-2 cells. Exposure of U-2 OS and Saos-2 cells to hyperthermia and clemastine inhibited AKT/mTOR and induced expression of the autophagy biomarkers LC3B II and LC3-positive puncta formation. The inhibition of autophagy by 3-methyladenine blocked hyperthermia and clemastine-mediated induction of LC3B II, LC3-positive puncta formation, and OS cell apoptosis. These results indicate that clemastine and hyperthermia sensitize OS cell lines by inducing increased autophagic cell death. Collectively, our data suggest that hyperthermia along with antihistamine therapy may provide an improved approach for the treatment of OS.

6.
J Fluoresc ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625571

ABSTRACT

For the first time, clemastine was estimated in this work utilizing two validated resonance Rayleigh scattering (RRS) and fluorimetric methods. The methods relied on forming an association complex in an acidic medium between eosin Y reagent and clemastine. In the spectrofluorimetric approach, the investigated drug was quantified by quenching the fluorescence-emission intensity of eosin Y at 543.5 nm. The RRS method relied on enhancing the RRS spectrum at 331.8 nm, which is produced when eosin Y interacts with clemastine. Suitable conditions were established for the reaction to achieve maximum sensitivity. The linear values obtained from the spectrofluorimetric approach and the RRS method fall into the ranges of 0.2-1.5 µg mL- 1 and 0.25-2.0 µg mL- 1, respectively. It was established that the detection limits for these methods were 0.045 µg mL- 1 and 0.059 µg mL- 1, respectively. The developed methodologies yielded acceptable recoveries when used to estimate the quantity of clemastine in its pharmaceutical tablet dosage form. Regarding the use of greener solvents that were chosen, the suggested and reported methods were compared with the help of the Green Solvents Selecting (GSST) tool for assessing hazardous solvents to achieve sustainability. Furthermore, analytical Eco scale and comprehensive assessments of whiteness, blueness, and greenness were carried out utilizing Modified NEMI, ComplexGAPI, and AGREE evaluation tools. Additionally, recently developed tools such as BAGI and RGB 12 were applied to assess the blueness and the whiteness of the suggested methods.

7.
Glia ; 72(6): 1117-1135, 2024 06.
Article in English | MEDLINE | ID: mdl-38450767

ABSTRACT

Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.


Subject(s)
Transcription Factors, TFIII , Transcription Factors, TFII , Williams Syndrome , Mice , Animals , Microglia , Williams Syndrome/genetics , Neurons/metabolism , Disease Models, Animal , Transcription Factors, TFIII/metabolism , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism
8.
Transl Res ; 268: 40-50, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246342

ABSTRACT

Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.


Subject(s)
Axons , Clemastine , Cognitive Dysfunction , Disease Models, Animal , Myelin Sheath , Rats, Sprague-Dawley , Animals , Clemastine/pharmacology , Clemastine/therapeutic use , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Axons/drug effects , Axons/pathology , Male , Rats , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Diffuse/drug effects , Brain Injuries, Diffuse/pathology , Hippocampus/drug effects , Hippocampus/pathology
9.
Int Immunopharmacol ; 128: 111481, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38232534

ABSTRACT

Clemastine (CLM) is repurposed to enhance remyelination in multiple sclerosis (MS) patients. CLM blocks histamine and muscarinic receptors as negative regulators to oligodendrocyte differentiation. These receptors are linked to the canonical and non-canonical Notch-1 signaling via specific ligands; Jagged-1 and F3/Contactin-1, respectively. Yet, there are no previous studies showing the influence of CLM on Notch entities. Herein, the study aimed to investigate to which extent CLM aligns to one of the two Notch-1 arms in experimental autoimmune encephalomyelitis (EAE) rat model. Three groups were utilized where first group received vehicles. The second group was injected by spinal cord homogenate mixed with complete Freund's adjuvant on days 0 and 7. In the third group, CLM (5 mg/kg/day; p.o) was administered for 15 days starting from the day of the first immunization. CLM ameliorated EAE-associated motor and gripping impairment in rotarod, open-field, and grip strength arena beside sensory anomalies in hot plate, cold allodynia, and mechanical Randall-Selitto tests. Additionally, CLM alleviated depressive mood observed in tail suspension test. These findings harmonized with histopathological examinations of Luxol-fast blue stain together with enhanced immunostaining of myelin basic protein and oligodendrocyte lineage gene 2 in corpus callosum and spinal cord. Additionally, CLM enhanced oligodendrocyte myelination and maturation by increasing 2',3'-cyclic nucleotide 3'-phosphodiesterase, proteolipid protein, aspartoacylase as well. CLM restored the level of F3/Contactin-1 in the diseased rats over Jagged-1 level; the ligand of the canonical pathway. This was accompanied by elevated gene expression of Deltex-1 and reduced hairy and enhancer-of-split homologs 1 and 5. Additionally, CLM suppressed microglial and astrocyte activation via reducing the expression of ionized calcium-binding adaptor molecule-1 as well as glial fibrillary acidic protein, respectively. These results outlined the remyelinating beneficence of CLM which could be due to augmenting the non-canonical Notch-1 signaling over the canonical one.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Rats , Animals , Jagged-1 Protein , Clemastine , Contactin 1 , Receptors, Notch , Models, Theoretical
10.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092269

ABSTRACT

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Subject(s)
Chronic Pain , Clemastine , Humans , Animals , Mice , Clemastine/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Myelin Sheath/metabolism , Central Nervous System , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Hippocampus/metabolism
11.
Children (Basel) ; 10(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38002819

ABSTRACT

Originally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis. Here, we conducted an in-depth analysis of the feasibility, safety, and neuroprotective efficacy of clemastine administration in near-term lambs (n = 25, 141-143 days) following a global ischemic insult induced via an umbilical cord occlusion (UCO) model. Lambs were randomly assigned to receive clemastine or placebo postnatally, and outcomes were assessed over a six-day period. Clemastine administration was well tolerated. While treated lambs demonstrated improvements in inflammatory scores, their neurodevelopmental outcomes were unchanged.

12.
Front Mol Neurosci ; 16: 1279985, 2023.
Article in English | MEDLINE | ID: mdl-37840769

ABSTRACT

Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.

13.
Cancers (Basel) ; 15(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37760589

ABSTRACT

Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.

14.
Int Immunopharmacol ; 123: 110649, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37494840

ABSTRACT

Clemastine fumarate, which has been identified as a promising agent for remyelination and autophagy enhancement, has been shown to mitigate Aß deposition and improve cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Based on these findings, we investigated the effect of clemastine fumarate in hTau mice, a different Alzheimer's disease model characterized by overexpression of human Tau protein. Surprisingly, clemastine fumarate was effective in reducing pathological deposition of Tau protein, protecting neurons and synapses from damage, inhibiting neuroinflammation, and improving cognitive impairment in hTau mice. Interestingly, chloroquine, an autophagy inhibitor, had a significant impact on total and Sarkosyl fractions of autophagy, demonstrating that it can interrupt autophagy. Notably, after administration of chloroquine, levels of Tau protein were significantly increased. When clemastine fumarate was co-administered with chloroquine, the protective effects were reversed, indicating that clemastine fumarate indeed triggered autophagy and promoted the degradation of Tau protein, while also inhibiting further Tauopathy-related neuroinflammation and synapse loss to improve cognitive function in hTau mice.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Humans , Animals , tau Proteins/metabolism , Alzheimer Disease/metabolism , Clemastine , Neuroinflammatory Diseases , Tauopathies/drug therapy , Tauopathies/metabolism , Tauopathies/pathology , Cognition , Autophagy , Mice, Transgenic , Disease Models, Animal
15.
Brain ; 146(8): 3331-3346, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37068912

ABSTRACT

Pitt-Hopkins syndrome is an autism spectrum disorder caused by autosomal dominant mutations in the human transcription factor 4 gene (TCF4). One pathobiological process caused by murine Tcf4 mutation is a cell autonomous reduction in oligodendrocytes and myelination. In this study, we show that the promyelinating compounds, clemastine, sobetirome and Sob-AM2 are effective at restoring myelination defects in a Pitt-Hopkins syndrome mouse model. In vitro, clemastine treatment reduced excess oligodendrocyte precursor cells and normalized oligodendrocyte density. In vivo, 2-week intraperitoneal administration of clemastine also normalized oligodendrocyte precursor cell and oligodendrocyte density in the cortex of Tcf4 mutant mice and appeared to increase the number of axons undergoing myelination, as EM imaging of the corpus callosum showed a significant increase in the proportion of uncompacted myelin and an overall reduction in the g-ratio. Importantly, this treatment paradigm resulted in functional rescue by improving electrophysiology and behaviour. To confirm behavioural rescue was achieved via enhancing myelination, we show that treatment with the thyroid hormone receptor agonist sobetirome or its brain penetrating prodrug Sob-AM2, was also effective at normalizing oligodendrocyte precursor cell and oligodendrocyte densities and behaviour in the Pitt-Hopkins syndrome mouse model. Together, these results provide preclinical evidence that promyelinating therapies may be beneficial in Pitt-Hopkins syndrome and potentially other neurodevelopmental disorders characterized by dysmyelination.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Humans , Animals , Mice , Clemastine , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Pharmaceutical Preparations , Intellectual Disability/drug therapy , Intellectual Disability/genetics
16.
J Clin Med ; 12(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36902833

ABSTRACT

Multiple genetic, metabolic, and environmental abnormalities are known to contribute to the pathogenesis of Alzheimer's dementia (AD). If all of those abnormalities were addressed it should be possible to reverse the dementia; however, that would require a suffocating volume of drugs. Nevertheless, the problem may be simplified by using available data to address, instead, the brain cells whose functions become changed as a result of the abnormalities, because at least eleven drugs are available from which to formulate a rational therapy to correct those changes. The affected brain cell types are astrocytes, oligodendrocytes, neurons, endothelial cells/pericytes, and microglia. The available drugs include clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole. This article describes the ways by which the individual cell types contribute to AD's pathogenesis and how each of the drugs corrects the changes in the cell types. All five of the cell types may be involved in the pathogenesis of AD; of the 11 drugs, fingolimod, fluoxetine, lithium, memantine, and pioglitazone, each address all five of the cell types. Fingolimod only slightly addresses endothelial cells, and memantine is the weakest of the remaining four. Low doses of either two or three drugs are suggested in order to minimize the likelihood of toxicity and drug-drug interactions (including drugs used for co-morbidities). Suggested two-drug combinations are pioglitazone plus lithium and pioglitazone plus fluoxetine; a three-drug combination could add either clemastine or memantine. Clinical trials are required to validate that the suggest combinations may reverse AD.

17.
J Neurosci ; 43(11): 1859-1870, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36725322

ABSTRACT

Age-related decline in visual functions is a prevalent health problem among elderly people, and no effective therapies are available up-to-date. Axon degeneration and myelin loss in optic nerves (ONs) are age-dependent and become evident in middle-aged (13-18 months) and old (20-22 months) mice of either sex compared with adult mice (3-8 months), accompanied by functional deficits. Oligodendrocyte (OL) turnover is actively going on in adult ONs. However, the longitudinal change and functional significance of OL turnover in aging ONs remain largely unknown. Here, using cell-lineage labeling and tracing, we reported that oligodendrogenesis displayed an age-dependent decrease in aging ONs. To understand whether active OL turnover is required for maintaining axons and visual function, we conditionally deleted the transcription factor Olig2 in the oligodendrocyte precursor cells of young mice. Genetically dampening OL turnover by Olig2 ablation resulted in accelerated axon loss and retinal degeneration, and subsequently impaired ON signal transmission, suggesting that OL turnover is an important mechanism to sustain axon survival and visual function. To test whether enhancing oligodendrogenesis can prevent age-related visual deficits, 12-month-old mice were treated with clemastine, a pro-myelination drug, or induced deletion of the muscarinic receptor 1 in oligodendrocyte precursor cells. The clemastine treatment or muscarinic receptor 1 deletion significantly increased new OL generation in the aged ONs and consequently preserved visual function and retinal integrity. Together, our data indicate that dynamic OL turnover in ONs is required for axon survival and visual function, and enhancing new OL generation represents a potential approach to reversing age-related declines of visual function.SIGNIFICANCE STATEMENT Oligodendrocyte (OL) turnover has been reported in adult optic nerves (ONs), but the longitudinal change and functional significance of OL turnover during aging remain largely unknown. Using cell-lineage tracing and oligodendroglia-specific manipulation, this study reported that OL generation was active in adult ONs and the efficiency decreased in an age-dependent manner. Genetically dampening OL generation by Olig2 ablation resulted in significant axon loss and retinal degeneration, along with delayed visual signal transmission. Conversely, pro-myelination approaches significantly increased new myelin generation in aging ONs, and consequently preserved retinal integrity and visual function. Our findings indicate that promoting OL generation might be a promising strategy to preserve visual function from age-related decline.


Subject(s)
Clemastine , Retinal Degeneration , Mice , Animals , Clemastine/pharmacology , Oligodendroglia/physiology , Myelin Sheath/physiology , Optic Nerve , Axons , Cell Differentiation/physiology
18.
Neurochem Int ; 164: 105505, 2023 03.
Article in English | MEDLINE | ID: mdl-36754122

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system characterized by remyelination failure, axonal degeneration, and progressive worsening of motor functions. Animal models of demyelination are frequently used to develop and evaluate therapies for MS. We recently reported that focal internal capsule (IC) demyelination in mice with lysophosphatidylcholine injection induced acute motor deficits followed by recovery through remyelination. However, it remains unknown whether the IC demyelination mouse model can be used to evaluate changes in motor functions caused by pharmacological treatments that promote remyelination using behavioral testing and histological analysis. In this study, we examined the effect of clemastine, an anti-muscarinic drug that promotes remyelination, in the mouse IC demyelination model. Clemastine administration improved motor function and changed forepaw preference in the IC demyelinated mice. Moreover, clemastine-treated mice showed increased mature oligodendrocyte density, reduced axonal injury, an increased number of myelinated axons and thicker myelin in the IC lesions compared with control (PBS-treated) mice. These results suggest that the lysophosphatidylcholine-induced IC demyelination model is useful for evaluating changes in motor functions following pharmacological treatments that promote remyelination.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Remyelination , Mice , Animals , Demyelinating Diseases/chemically induced , Lysophosphatidylcholines , Clemastine/adverse effects , Internal Capsule/pathology , Myelin Sheath/pathology , Multiple Sclerosis/pathology , Oligodendroglia , Mice, Inbred C57BL , Disease Models, Animal , Cuprizone/pharmacology
19.
Glia ; 71(5): 1333-1345, 2023 05.
Article in English | MEDLINE | ID: mdl-36661098

ABSTRACT

Visual impairment in diabetes is a growing public health concern. Apart from the well-defined diabetic retinopathy, disturbed optic nerve function, which is dependent on the myelin sheath, has recently been recognized as an early feature of visual impairment in diabetes. However, the underlying cellular mechanisms remain unclear. Using a streptozotocin-induced diabetic mouse model, we observed a myelin deficiency along with a disturbed composition of oligodendroglial lineage cells in diabetic optic nerve. We found that new myelin deposition, a continuous process that lasts throughout adulthood, was diminished during pathogenesis. Genetically dampening newly generated myelin by conditionally deleting olig2 in oligodendrocyte precursor cells within this short time window extensively delayed the signal transmission of the adult optic nerve. In addition, clemastine, an antimuscarinic compound that enhances myelination, significantly restored oligodendroglia, and promoted the functional recovery of the optic nerve in diabetic mice. Together, our results point to the role of new myelin deposition in optic neuropathy under diabetic insult and provide a promising therapeutic target for restoring visual function.


Subject(s)
Diabetes Mellitus, Experimental , Myelin Sheath , Animals , Mice , Myelin Sheath/physiology , Disease Models, Animal , Oligodendroglia/physiology , Optic Nerve , Vision Disorders
20.
Biochem Pharmacol ; 209: 115435, 2023 03.
Article in English | MEDLINE | ID: mdl-36720356

ABSTRACT

There is vast evidence for the effect of NOD-like receptor protein-3 (NLRP3) inflammasome on multiple sclerosis (MS) pathogenesis. Clemastine (CLM) targets NLRP3 in hypoxic brain injury and promotes oligodendrocyte differentiation. However, no previous study pointed to the link of CLM with inflammasome components in MS. Herein, the study aimed to verify the action of CLM on NLRP3 signaling in experimental autoimmune encephalomyelitis (EAE) as an MS rat model. Homogenate of spinal cord with complete Freund's adjuvant was administered on days 0 and 7 to induce EAE. Rats received either CLM (5 mg/kg/day; p.o.) or MCC950 (2.5 mg/kg/day; i.p) for 15 days starting from the first immunization day. In EAEs' brains, NLRP3 pathway components; total and phosphorylated p38 mitogen-activated protein kinase (MAPK), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, interleukins 1ß and -18 along with pyroptotic marker; gasdermin D (GSDMD) were upregulated. These were accompanied with diminished nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and total antioxidant capacity levels. CLM improved these perturbations as well as signs of MS; weight loss, clinical scores, and motor disorders observed in the open field, hanging wire and rotarod tests. Histopathological examinations revealed improvement in H&E abnormalities and axonal demyelination as shown by luxol fast blue stain in lumbar sections of spinal cord. These CLM's actions were studied in comparison to MCC950 as a well-established selective blocker of the NLRP3 inflammasome. Conclusively, CLM has a protective role against neuroinflammation and demyelination in EAE via its anti-inflammatory and anti-pyroptotic actions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Inflammasomes/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Clemastine/pharmacology , NF-E2-Related Factor 2 , Pyroptosis , NLR Proteins , Neuroinflammatory Diseases , p38 Mitogen-Activated Protein Kinases , Heme Oxygenase-1 , Multiple Sclerosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL