Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 683
Filter
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003065

ABSTRACT

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Subject(s)
Anti-Bacterial Agents , Livestock , Manure , Soil Microbiology , Animals , Soil/chemistry , Carbon Sequestration , Carbon/metabolism , Phosphorus , Recycling , Soil Pollutants/metabolism , Cattle , Swine , Nitrogen/analysis , Oxytetracycline
2.
R Soc Open Sci ; 11(6): 240530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39100162

ABSTRACT

Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.

3.
Front Microbiol ; 15: 1428701, 2024.
Article in English | MEDLINE | ID: mdl-39101032

ABSTRACT

In terms of lifestyle, bacterioplankton can be classified as free-living (FL) and particle-attached (PA) forms, and both play essential roles in biogeochemical cycling in aquatic ecosystems. Structure, distribution, and community assembly of FL and PA bacteria in plateau riverine waterbodies are largely unknown. Therefore, we explored the seasonal dynamics of FLand PA bacterial communities in the Wujiangdu reservoir, Yungui Plateau using 16S rRNA gene high-throughput sequencing. Results revealed there was a significant environmental heterogeneity in Wujiangdu reservoir seasonally. The dominant phylum was Actinomycetota for FL and Pseudomonadota for PA bacteria. Species richness and diversity was higher in autumn and winter compared to spring and summer. In general, PA diversity was greater than FL, but with some temporal variations. Species turnover was the major contributor to ß-diversity of both FL and PA lifestyles, and significant differences were noticed between FL and PA bacterial community composition. Distinct co-occurrence network patterns implied that more connections exist between FL bacteria, while more complex PA networks were in parallel to their greater diversity and stronger interactions in biofilms on particles. Dispersal limitation was the major driving force for both FL and PA bacterial community assembly. Deterministic processes were of relatively low importance, with homogeneous selection for FL and heterogeneous selection for PA bacteria. Temperature was the most important environmental driver of seasonal bacterial dynamics, followed by nitrate for FL and Secchi depth for PA bacteria. This study allows for a better understanding of the temporal variability of different bacteria lifestyles in reservoirs in the vulnerable and rapidly changing plateau environment, facilitating further microbial research related to global warming and eutrophication.

4.
Front Microbiol ; 15: 1433046, 2024.
Article in English | MEDLINE | ID: mdl-39104579

ABSTRACT

Water reservoir sediments represent a distinct habitat that harbors diverse microbial resources crucial for nitrogen cycling processes. The discovery of resuscitation promoting factor (Rpf) has been recognized as a crucial development in understanding the potential of microbial populations. However, our understanding of the relationship between microorganisms containing rpf-like genes and nitrogen-cycling functional populations remains limited. The present study explored the distribution patterns of rpf-like genes and nitrogen-cycling genes in various water reservoir sediments, along with their correlation with environmental factors. Additionally, the co-occurrence of rpf-like genes with genes associated with the nitrogen cycle and viable but non-culturable (VBNC) formation was investigated. The findings indicated the ubiquitous occurrence of Rpf-like domains and their related genes in the examined reservoir sediments. Notably, rpf-like genes were predominantly associated with Bradyrhizobium, Nitrospira, and Anaeromyxobacter, with pH emerging as the primary influencing factor for their distribution. Genera such as Nitrospira, Bradyrhizobium, Anaeromyxobacter, and Dechloromonas harbor the majority of nitrogen-cycling functional genes, particularly denitrification genes. The distribution of nitrogen-cycling microbial communities in the reservoir sediments was mainly influenced by pH and NH4 +. Notably, correlation network analysis revealed close connections between microorganisms containing rpf-like genes and nitrogen-cycling functional populations, as well as VBNC bacteria. These findings offer new insights into the prevalence of rpf-like genes in the water reservoir sediments and their correlation with nitrogen-cycling microbial communities, enhancing our understanding of the significant potential of microbial nitrogen cycling.

5.
Mar Pollut Bull ; 207: 116832, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128232

ABSTRACT

Benthic eukaryotic microalgae were analyzed by metabarcoding the partial 18S rRNA gene in Daya Bay bi-monthly in 2021. Altogether 941 eukaryotic microalgal OTUs were detected, belonging to 27 classes of 8 phyla. Dinophyta and Chlorophyta were the dominant phyla. Microalgal community in the mariculture zone differed significantly from those in non-mariculture zone, reflected by low alpha diversity indexes and increasing abundance and richness of chlorophytes and correspondingly decreasing of dinoflagellates. The abundant occurrences of the pico- and nano-sized taxa such as the chlorophyte Picochlorum in the mariculture zone suggested that nutrient enrichment might result in the miniaturization of the benthic eukaryotic microalgae. The co-occurrence network suggested more negative interactions between taxa in the mariculture zone. A total of 41 algal bloom and/or harmful algal bloom (HAB) species were detected in this study, suggesting a high potential risk of HABs in Daya Bay, especially for the recurrent bloom species Scrippsiella acuminata.

6.
Environ Microbiome ; 19(1): 57, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103916

ABSTRACT

BACKGROUND: Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale. RESULTS: The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks. CONCLUSIONS: The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.

7.
Food Res Int ; 192: 114770, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147493

ABSTRACT

Pit mud (PM) is fermenting agents in the strong-flavor baijiu (SFB) production. In this paper, the discrepancies in fermentation parameters, microbial community succession patterns and metabolic phenotypes were compared in multidimensional PMs. The results showed that pyruvic acid, succinic acid, S-Acetyldihydrolipoamide-E, glycerol and glyceric acid were the key metabolites responsible for the metabolic differences between the 2-, 30-,100- and 300-year multidimensional PMs, while the butanoic acid, heptyl, heptanoic acid, heptanoic acid ethyl ester, hexanoic acid and octanoic acid were the key differential flavor compounds in the 2-, 30-,100- and 300-year multidimensional PMs. Concurrently, the diversity and abundance of microbial community also exhibited significant differences between the new and old multidimensional PMs, the assembly pattern of bacterial communities changed from deterministic to stochasticity from lower (bottom of the pit and under the huangshui fluid) to upper PM (up the huangshui fluid and top of the pit). Key microorganisms related to the succession process of the lower PM were Clostridium, Methanobacterium, Petrimonas, Lactobacillus, Methanobrevibacter, Bellilinea, Longilinea, Bacillus. In contrast, the upper PM were Caproicibacter, Longilinea, Lactobacillus, Proteinphilum, Methanobrevibacter, Methanobacterium, Methanobacteriaceae, Petrimonas, Bellilinea and Atopobium. Redundancy analysis (RDA) indicated that the key environmental factors regulating the succession of microbial in upper PM were lactic acid, moisture, pH and available phosphorus. In contrast, the lower was lactic acid, acetic acid and ammonia N. Based on these results, heterogeneous mechanisms between new and old multidimensional PMs were explored, providing a theoretical support for improving the quality of new PM.


Subject(s)
Fermentation , Phenotype , Bacteria/metabolism , Bacteria/classification , Microbiota , Flavoring Agents/metabolism , Food Microbiology , Taste
8.
Front Microbiol ; 15: 1422534, 2024.
Article in English | MEDLINE | ID: mdl-39149207

ABSTRACT

Soil microorganisms play a crucial role in the plant invasion process, acting as both drivers of and responders to plant invasion. However, the effects of plant invasion on the complexity and stability of co-occurrence networks of soil microbial communities remain unclear. Here, we investigated how the invasion of Spartina alterniflora affected the diversity, composition, and co-occurrence networks of soil bacterial and fungal communities in the Yellow River Delta, China. Compared to the native plant (Suaeda salsa), S. alterniflora invasion decreased the α-diversity of soil bacterial communities but did not affect that of fungal communities. The ß-diversity of soil bacterial and fungal communities under S. salsa and S. alterniflora habitats also differed dramatically. S. alterniflora invasion increased the relative abundance of the copiotrophic phylum Bacteroidota, whereas decreased the relative abundances of the oligotrophic phyla Acidobacteriota and Gemmatimonadota. Additionally, the relative abundance of Chytridiomycota, known for its role in degrading recalcitrant organic matter, increased substantially within the soil fungal community. Functional predictions revealed that S. alterniflora invasion increased the relative abundance of certain soil bacteria involved in carbon and nitrogen cycling, including aerobic chemoheterotrophy, nitrate reduction, and nitrate respiration. More importantly, S. alterniflora invasion reduced the complexity and stability of both soil bacterial and fungal community networks. The shifts in soil microbial community structure and diversity were mainly induced by soil available nutrients and soil salinity. Overall, our study highlights the profound impacts of S. alterniflora invasion on soil microbial communities, which could further indicate the modification of ecosystem functioning by invasive species.

9.
Front Microbiol ; 15: 1416256, 2024.
Article in English | MEDLINE | ID: mdl-38962123

ABSTRACT

Introduction: The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods: In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results: There was no significant difference in α diversity, but significant difference in ß diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion: From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.

10.
PeerJ ; 12: e17458, 2024.
Article in English | MEDLINE | ID: mdl-38948231

ABSTRACT

In a jujube orchard, cropping withgrass may influence bacterial diversity and ecological networks due to changes of physicochemical properties in soil, which has a serious effect on the stability of soil ecosystems. The aim of this study was to analyze the effects of different cultivation methods (CK: cleaning tillage; NG: cropping with native grass; VV: cropping with Vicia villosa) on the soil's bacterial structure and its co-occurrence network in a jujube orchard. The results showed that the highest moisture content, total nitrogen, and organic matter in the rhizosphere soil of a jujube orchard was found in the VV group. The soil's moisture content, total nitrogen, and organic matter in the VV group were 2.66%, 0.87 g kg-1, and 5.55 mg kg-1 higher than that found in the CK group. Compared to the CK group, the number of unique species in the rhizosphere soil in the NG and the VV groups increased by 7.33% and 21.44%. The PICRUSt and FAPROTAX analysis showed that sown grass had a greater influence on the ecological function of the soil's bacteria. Cropping with Vicia villosa and native grass significantly increased aerobic chemoheterotrophy, nitrogen respiration, nitrate reduction related to biochemical cycles, and the relative abundance of genes related to carbohydrate metabolism and the biodegradation of xenobiotics. The bacterial network complexity in the NG group was higher than that in the CK and VV groups and was greatest in the hub nodes (OTU42, Bacteroidota; OTU541, Nitrospiraceae). In this study, the ecological benefit seen in the soil's microbial function provides support to the theory that cropping with grass (Vicia villosa) increases the sustainable development of a jujube orchard.


Subject(s)
Rhizosphere , Soil Microbiology , Vicia , Ziziphus , Vicia/microbiology , Soil/chemistry , Poaceae/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
11.
BMC Plant Biol ; 24(1): 646, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977970

ABSTRACT

Long-term application of green manure (GM) and nitrogen (N) fertilizers markedly improved soil fertility and boosted rice yield in ecologically fragile karst paddy fields. However, the precise response mechanisms of the soil bacterial community to varying amounts of green manure alone and in combination with N fertilizer in such environments remain poorly elucidated. In this study, we investigated the soil bacterial communities, keystone taxa, and their relationship with soil environmental variables across eight fertilization treatments. These treatments included group without N addition (N0M0, no N fertilizer and no GM; N0M22.5, 22.5 t/ha GM; N0M45, 45 t/ha GM, N0M67.5, 67.5 t/ha GM) and group with N addition (NM0, N fertilizer and no GM; NM22.5, N fertilizer and 22.5 t/ha GM; NM45, N fertilizer and 45 t/ha GM; NM67.5, N fertilizer and 67.5 t/ha GM). The results revealed that increasing green manure input significantly boosted rice yield by 15.51-22.08% and 21.84-35% in both the group without and with N addition, respectively, compared to N0M0 treatment. Moreover, with escalating green manure input, soil TN, AN, AK, and AP showed an increasing trend in the group without N addition. However, following the addition of N fertilizer, TN and AN content initially rose, followed by a decline due to the enhanced nutrient availability for rice. Furthermore, the application of a large amount of N fertilizer decreased the C: N ratio in the soil, resulting in significant changes in both the soil microbial community and its function. Particularly noteworthy was the transition of keystone taxa from their original roles as N-fixing and carbon-degrading groups (oligotrophs) to roles in carbon degradation (copiotrophs), nitrification, and denitrification. This shift in soil community and function might serve as a primary factor contributing to enhanced nutrient utilization efficiency in rice, thus significantly promoting rice yield.


Subject(s)
Bacteria , Fertilizers , Manure , Nitrogen , Oryza , Soil Microbiology , Oryza/growth & development , Fertilizers/analysis , Nitrogen/metabolism , Bacteria/metabolism , Soil/chemistry , Agriculture/methods , Microbiota
12.
Front Plant Sci ; 15: 1374431, 2024.
Article in English | MEDLINE | ID: mdl-39006956

ABSTRACT

Plant-parasitic nematodes (PPNs) are among the most damaging pathogens to host plants. Plants can modulate their associated bacteria to cope with nematode infections. The tritrophic plant-nematode-microbe interactions are highly taxa-dependent, resulting in the effectiveness of nematode agents being variable among different host plants. Ficus tikoua is a versatile plant with high application potential for fruits or medicines. In recent years, a few farmers have attempted to cultivate this species in Sichuan, China, where parasitic nematodes are present. We used 16S rRNA genes to explore the effects of nematode parasitism on root-associated bacteria in this species. Our results revealed that nematode infection had effects on both endophytic bacterial communities and rhizosphere communities in F. tikoua roots, but on different levels. The species richness increased in the rhizosphere bacterial communities of infected individuals, but the community composition remained similar as compared with that of healthy individuals. Nematode infection induces a deterministic assembly process in the endophytic bacterial communities of parasitized organs. Significant taxonomic and functional changes were observed in the endophytic communities of root knots. These changes were characterized by the enrichment of nitrogen-fixing bacteria, including Bradyrhizobium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and nematode-antagonistic bacteria, such as Pseudonocardia, Pseudomonas, Steroidobacter, Rhizobacter, and Ferrovibrio. Our results would help the understanding of the tritrophic plant-nematode-bacterium interactions in host plants other than dominant crops and vegetables and would provide essential information for successful nematode management when F. tikoua were cultivated on large scales.

13.
Huan Jing Ke Xue ; 45(7): 4251-4265, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022971

ABSTRACT

To clarify the regulating effect of vegetation and soil factors on microbial communities in the alpine steppe under degradation on the Qinghai-Xizang Plateau, the alpine steppe in the Sanjiangyuan area of the Qinghai-Tibet Plateau was chosen. We analyzed the differences in vegetation and soil factors in different stages of degradation (non-degradation, moderate degradation, and severe degradation) and detected the variations in microbial community characteristics in the alpine steppe under different degradation stages using high-throughput sequencing technology. Eventually, redundancy analysis (RDA) and multiple regression matrixes (MRM) based on the similarity or dissimilarity matrix were used to identify key environmental factors regulating microbial (bacterial and fungal) community changes under degradation. The results showed that the degradation of the alpine steppe significantly changed the community coverage, height, biomass, and important value of graminae; significantly reduced the contents of soil organic matter, total nitrogen, total phosphorus, and silt; and increased the soil bulk density and sand content. Degradation did not change the composition of bacteria and fungi, but their composition proportions changed and also resulted in the loss of microbial richness (Chao1 index and Richness index) but did not significantly change the microbial diversity (Shannon index). With the occurrence of degradation, the vegetation characteristics, soil physicochemical properties, and microbial diversity showed a consistent change trend. Combined with the characteristics of the network topology changes (the number of nodes and clustering coefficient significantly decreased), it was found that degradation of the alpine steppe led to the decline of interspecies interactions, decentralization of network, and homogenization of microorganisms, but the cooperation relations among the species were maintained (positive correlation connections accounted for more than 90% in all degradation stages). Under the alpine steppe degradation, the vegetation-soil interaction had the greatest effect on soil bacterial community, whereas soil physicochemical properties had the greatest influence on soil fungal community. Specifically, vegetation community height, biomass, and soil bulk density were the mutual factors regulating soil microorganisms, whereas the vegetation Simpson index, important value of graminae, soil total phosphorus, total potassium, and silt content were the unique factors affecting the soil bacterial community, and soil pH and total nitrogen content were the particular factors affecting the soil fungal community.


Subject(s)
Grassland , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Phosphorus/analysis , China , Nitrogen/analysis , Fungi/classification , Fungi/isolation & purification , Tibet , Ecosystem
14.
Water Res ; 262: 122047, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39003956

ABSTRACT

Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.

15.
Mar Pollut Bull ; 205: 116658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964192

ABSTRACT

Offshore coastal marine ranching ecosystems provide habitat for diverse and active bacterial communities. In this study, 16S rRNA gene sequencing and multiple bioinformatics methods were applied to investigate assembly dynamics and relationships in different habitats. The higher number of edges in the water network, more balanced ratio of positive and negative links, and more keystone species included in the co-occurrence network of water. Stochastic processes dominated in shaping gut and sediment community assembly (R2 < 0.5), while water bacterial community assembly were dominated by deterministic processes (R2 > 0.5). Dissimilarity-overlap curve model indicated that the communities in different habitats have general dynamics and interspecific interaction (P < 0.001). Bacterial source-tracking analysis revealed that the gut was more similar to the sediment than the water bacterial communities. In summary, this study provides basic data for the ecological study of marine ranching through the study of bacterial community dynamics.


Subject(s)
Bacteria , Ecosystem , RNA, Ribosomal, 16S , Seasons , Bacteria/genetics , Bacteria/classification , Geologic Sediments/microbiology , Microbiota , Seawater/microbiology
16.
Sci Total Environ ; 946: 174398, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960188

ABSTRACT

Effect of periodic thermal stratification in deep-water reservoirs on aquatic ecosystems has been a research hotspot. Nevertheless, there is limited information on the response patterns of microbial communities to environmental changes under such specialized conditions. To fill this gap, samples were collected from a typical deep-water reservoir during the thermal stratification period (SP) and mixed period (MP). Three crucial questions were answered: 1) How microbial communities develop with stratified to mixed succession, 2) how the relative importance of stochastic and deterministic processes to microbial community assembly, shifted in two periods, and 3) how environmental variables drive microbial co-occurrence networks and functional group alteration. We used Illumina Miseq high-throughput sequencing to investigate the dynamics of the microbial community over two periods, constructed molecular ecological networks (MENs), and unraveled assembly processes based on null and neutral models. The results indicated that a total of 33.9 % and 27.7 % of bacterial taxa, and 23.1 % and 19.4 % of fungal taxa were enriched in the stratified and mixed periods, respectively. Nitrate, water temperature, and total phosphorus drove the variation of microbial community structure. During the thermal stratification period, stochastic processes (dispersal limitation) and deterministic processes (variable selection) dominated the assembly of bacterial and fungal communities, followed by a shift to stochastic processes dominated by dispersal limitation in two communities. The MENs results revealed that thermal stratification-induced environmental stresses increased the complexity of microbial networks but decreased its robustness, resulting in more vulnerable ecological networks. Therefore, this work provides critical ecological insights for the longevity and sustainability of water quality management in an artificially regulated engineered system.


Subject(s)
Microbiota , Water Microbiology , Temperature , Bacteria/classification , Bacteria/genetics , Environmental Monitoring , Ecosystem
17.
Foods ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998632

ABSTRACT

The objective of this study was to explore the preservation of food products through the co-fermentation of whole-plant cassava and Piper sarmentosum (PS) without additives. We assessed fermentation quality, antioxidant activity, bacterial community structure, function profile, and microbial ecological network features. Our results demonstrate that co-fermentation of whole-plant cassava with 10% PS significantly improves food quality. The co-fermented samples exhibited enhanced lactic acid concentrations and increased antioxidant activity, with reduced pH values and concentrations of acetic acid, butyric acid, and ammonia-N(NH3-N) compared to whole-plant cassava fermented alone. In addition, PS addition also optimized microbial community structure by elevating the total abundance of lactic acid bacteria and influenced bacterial predicted functions. Furthermore, our analysis of co-occurrence networks reveals that co-fermentation impacts microbial network features, including module numbers and bacterial relative abundances, leading to altered complexity and stability of the networks. Moreover, out study also highlights the impact of ferment undesirable bacteria like Pseudomonas aeruginosa and unclassified_Muribaculaceae playing crucial roles in microbial network complexity and stability. These findings provide valuable insights into the anaerobic fermentation process and offers strategies for regulating food fermentation quality.

18.
Appl Microbiol Biotechnol ; 108(1): 417, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995388

ABSTRACT

Fertilizer input is one of the effective forest management practices, which improves soil nutrients and microbial community compositions and promotes forest productivity. However, few studies have explored the response of rhizosphere soil microbial communities to various fertilization regimes across seasonal dynamics. Here, we collected the rhizosphere soil samples from Phoebe bournei plantations to investigate the response of community assemblages and microbial interactions of the soil microbiome to the short-term application of four typical fertilizer practices (including chemical fertilizer (CF), organic fertilizer (OF), compound microbial fertilizer (CMF), and no fertilizer control (CK)). The amendments of organic fertilizer and compound microbial fertilizer altered the composition of rhizosphere soil bacterial and fungal communities, respectively. The fertilization regime significantly affected bacterial diversity rather than fungal diversity, and rhizosphere fungi responded more sensitively than bacteria to season. Fertilization-induced fungal networks were more complex than bacterial networks. Stochastic processes governed both rhizosphere soil bacterial and fungal communities, and drift and dispersal limitation dominated soil fungal and bacterial communities, respectively. Collectively, these findings demonstrate contrasting responses to community assemblages and interactions of rhizosphere bacteria and fungi to fertilizer practices. The application of organic fertilization strengthens microbial interactions and changes the succession of key taxa in the rhizosphere habitat. KEY POINTS: • Fertilization altered the key taxa and microbial interaction • Organic fertilizer facilitated the turnover of rhizosphere microbial communities • Stochasticity governed soil fungal and bacterial community assembly.


Subject(s)
Bacteria , Fertilizers , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Fertilizers/analysis , Fungi/classification , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Microbial Interactions , Seasons , Soil/chemistry
19.
Sci Total Environ ; 947: 174559, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992373

ABSTRACT

The distinctive environmental attributes of the Southern Ocean underscore the indispensability of microorganisms in this region. We analyzed 208 samples obtained from four separate layers (Surface, Deep Chlorophyll Maximum, Middle, and Bottom) in the neighboring seas of the Antarctic Peninsula and the Cosmonaut Sea to explore variations in microbial composition, interactions and community assembly processes. The results demonstrated noteworthy distinctions in alpha and beta diversity across diverse communities, with the increase in water depth, a gradual rise in community diversity was observed. In particular, the co-occurrence network analysis exposed pronounced microbial interactions within the same water mass, which are notably stronger than those observed between different water masses. Co-occurrence network complexity was higher in the surface water mass than in the bottom water mass. Yet, the surface water mass exhibited greater network stability. Moreover, in the phylogenetic-based ß-nearest taxon distance analyses, deterministic processes were identified as the primary factors influencing community assembly in Antarctic microorganisms. This study contributes to exploring diversity and assembly processes under the complex hydrological conditions of Antarctica.


Subject(s)
Biodiversity , Microbiota , Seawater , Antarctic Regions , Seawater/microbiology , Phylogeny , Environmental Monitoring , Water Microbiology , Bacteria/classification
20.
Sci Total Environ ; 949: 174692, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39002597

ABSTRACT

Global warming may reshape seasonal changes in microbial community diversity and co-occurrence network patterns, with significant implications for terrestrial ecosystem function. We conducted a 2-year in situ field simulation of the effects of warming on the seasonal dynamics of soil microbial communities in a northern subtropical Quercus acutissima forest. Our study revealed that warming had no significant effect on the richness or diversity of soil bacteria or fungi in the growing season, whereas different warming gradients had different effects on their diversity in the nongrowing season. Warming also changed the microbial community structure, increasing the abundance of some thermophilic microbial species and decreasing the abundance of some symbiotrophic microorganisms. The co-occurrence network analysis of the microbial community showed that warming decreased the complexity of the intradomain network in the soil bacterial community in the growing and nongrowing seasons but increased it in the fungal community. Moreover, increasing warming temperatures increased the complexity of the interdomain network between bacteria and fungi in the growing season but decreased it in the nongrowing season, and the keystone species in the interdomain network changed with warming. Warming also reduced the proportion of positive microbial community interactions, indicating that warming reduced the mutualism, commensalism, and neutralism of microorganisms as they adapted to soil environmental stress. The factors affecting the fungal community varied considerably across warming gradients, with the bacterial community being significantly affected by soil temperature, MBC, NO3--N and NH4+-N, moreover, SOC and TN significantly affected fungal communities in the 4 °C warming treatment. These results suggest that warming increases seasonal differences in the diversity and complexity of soil microbial communities in the northern subtropical region, significantly influencing soil dynamic processes regulating forest ecosystems under global warming.


Subject(s)
Forests , Global Warming , Microbiota , Seasons , Soil Microbiology , Bacteria/classification , Quercus/microbiology , Fungi , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL