Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.715
Filter
1.
J Appl Microbiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986507

ABSTRACT

AIM: Colistin serves as the drug of last resort for combating numerous multidrug-resistant (MDR) Gram-negative infections. Its efficacy is hampered by the prevalent issue of colistin resistance, which severely limits treatment options for critically ill patients. Identifying resistance genes is crucial for controlling resistance spread, with horizontal gene transfer being the primary mechanism among bacteria. This study aimed to assess the prevalence of plasmid-mediated mcr genes associated with colistin resistance in Gram-negative bacteria, utilizing both genotypic and phenotypic tests. METHODS AND RESULTS: The clinical isolates (n=913) were obtained from a tertiary care center in Chennai, India. Colistin resistance was seen among Gram-negative isolates. These strains underwent screening for mcr-1, mcr-3, mcr-4, and mcr-5 genes via conventional PCR. Additionally, mcr-positive isolates were confirmed through Sanger sequencing and phenotypic testing. The bacterial isolates predominantly comprised Klebsiella pneumoniae (62.43%), Escherichia coli (19.71%), Pseudomonas aeruginosa (10.73%), Acinetobacter baumannii (4.81%), along with other species. All isolates exhibited multidrug resistance to three or more antibiotic classes. Colistin resistance, determined via broth microdilution (BMD) using CLSI guidelines, was observed in 13.08% of the isolates studied. Notably, mcr-5 was detected in K. pneumoniae in PCR, despite their absence in Sanger sequencing and phenotypic tests (including the combined-disk test, colistin MIC in the presence of EDTA, and Zeta potential assays). This finding underscores the importance of employing multiple diagnostic approaches to accurately identify colistin resistance mechanisms. CONCLUSION AND IMPACT: The study highlights a concerning prevalence of colistin resistance among Enterobacterales, especially those producing carbapenemase, thereby impacting mortality rates. Nonetheless, further investigations are warranted to elucidate common mechanisms of colistin resistance and to evaluate the efficacy of screening techniques in detecting isolates carrying mcr genes responsible for enzyme-mediated lipopolysaccharide (LPS) modification.

2.
Indian J Microbiol ; 64(2): 540-547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011018

ABSTRACT

Klebsiella pneumoniae is considered as the most common pathogen of hospital-acquired pneumonia. K. pneumoniae has emerged as the superbug which had shown multidrug resistance (MDR) as well as extensively drug resistance. Carbapenem resistant K. pneumoniae (CRKP) has become a menace for the treatment with monotherapy of the patients mainly admitted in intensive care units. Hence, in the present study we collected total 187 sputum isolates of K. pneumoniae and performed the antimicrobial susceptibility testing by using the automated Vitek-2 system and broth micro-dilution method (67 CRKP). The combination study of solithromycin with meropenem, colistin, cefotaxime, piperacillin and tazobactam, nitrofurantoin, tetracycline, levofloxacin, curcumin and nalidixic acid was performed by using checkerboard assay. We observed the high rate of resistance towards ampicillin, cefotaxime, ceftriaxone, cefuroxime and aztreonam. The colistin and tigecycline were the most sensitive drugs. The CRKP were 36%, maximum were from the patients of ICUs. The best synergistic effect of solithromycin was with meropenem and cefotaxime (100%), colistin and tetracycline (80%). So, these combinations can be a choice of treatment for the infections caused by MDR CRKP and other Gram-negative bacteria where the monotherapy could not work.

3.
Environ Res ; 259: 119516, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950813

ABSTRACT

The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".

4.
Int J Antimicrob Agents ; : 107273, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002699

ABSTRACT

OBJECT: Colistin sulfate for injection (CSI) became clinically available in China in July 2019. To date, there is no published data regarding its usage in children. Our research group has been following data on the efficacy and safety of CSI in Chinese pediatric patients with carbapenem-resistant organism (CRO) infections. The purpose of this short communication is to provide a brief overview of the findings to date. METHODS: We reviewed the electronic medical records of pediatric patients (aged 9-17 years) who were administered CSI during their hospital stay at Tongji Hospital in Wuhan, China, between June 2021 and November 2023. Drug efficacy was evaluated based on clinical and microbiological outcomes, while drug safety was assessed using surveillance markers that reflect adverse reactions. RESULTS: A total of 20 patients met the inclusion criteria. The predominant pathogens were Klebsiella pneumoniae (8 strains), followed by Acinetobacter baumannii (5 strains) and Pseudomonas aeruginosa (2 strains). The clinical response rate of CSI was 85%, with a bacterial clearance rate of 79%. None of the patients experienced colistin-related nephrotoxicity or neurotoxicity during the treatment. CONCLUSION: In this real-world setting, CSI demonstrated a high level of clinical response and was well tolerated for the treatment of CRO infections in Chinese children.

5.
Cureus ; 16(6): e61538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957246

ABSTRACT

Background The escalating global rise in multidrug-resistant gram-negative bacteria presents an increasingly substantial threat to patient safety. Over the past decade, carbapenem-resistant Enterobacterales (CRE) have emerged as one of the most critical pathogens in hospital-acquired infections, notably within intensive care units. Colistin has become one of the last-resort antimicrobial agents utilized to combat infections caused by CRE. However, the use of colistin has been accompanied by a notable increase in the prevalence of colistin-resistant bacteria. This study aimed to investigate plasmid-mediated colistin resistance genes ranging from mcr-1 to mcr-8 among members of the Enterobacterales order. Materials and methods This prospective study was conducted in the microbiology laboratory of Afyonkarahisar Health Sciences University Health Research and Practice Center between May 1, 2021 and July 31, 2022. A total of 2,646 Enterobacterales isolates were obtained from all culture-positive clinical samples sent from various clinics. Of these, 79 isolates exhibiting resistance to carbapenem antibiotics were included in the study. Among the 79 isolates, the presence of mcr-1 to mcr-8 genes was investigated in 27 isolates that were shown to be resistant to colistin. The identification of bacteria at the species level and antibiotic susceptibility tests were conducted using the VITEK 2 automated system (bioMérieux, USA). Colistin resistance among Enterobacterales strains exhibiting carbapenem resistance was evaluated using the broth microdilution technique (ComASP™ Colistin, Liofilchem, Italy), in accordance with the manufacturer's instructions. Results In our in vitro investigations, the minimum inhibitory concentration (MIC) values for meropenem were determined to be >8 µg/ml, whereas for colistin, the MIC50 value was >16 µg/ml and the MIC90 value was 8 µg/ml. A total of 27 colistin-resistant strains were identified among the 79 carbapenem-resistant Enterobacterales strains analyzed. The most prevalent agent among colistin-resistant strains was Klebsiella pneumoniae (K. pneumoniae), representing 66.7% of the isolates. This was followed by Proteus mirabilis (P. mirabilis) with 29.6% and Escherichia coli (E. coli) with 3.7%. The colistin resistance rate among carbapenem-resistant strains was found to be 34.2%, with colistin MIC values in strains tested by the broth microdilution method ranging from 4 to >16 µg/ml concentrations. In polymerase chain reaction (PCR) studies, the mcr-1 gene region was successfully detected by real-time PCR in the positive control isolate. Nevertheless, none of the gene regions from mcr-1 to mcr-8 were identified in our study investigating the presence of plasmid-mediated genes using a multiplex PCR kit. Conclusion Although our study demonstrated the presence of increased colistin resistance rates in carbapenem-resistant Enterobacterales isolates, it resulted in the failure to detect genes from mcr-1 to mcr-8 by the multiplex PCR method. Therefore, it is concluded that the colistin resistance observed in Enterobacteriaceae isolates in our region is not due to the mcr genes screened, but to different resistance development mechanisms.

6.
Metab Eng ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019251

ABSTRACT

Colistin, also known as polymyxin E, is a lipopeptide antibiotic used to treat infections caused by multidrug-resistant gram-negative bacteria. It is considered a "last-line antibiotic", but its clinical development is hindered by low titer and impurities resulting from the presence of diverse homologs in microbial fermentation. To ensure consistent pharmaceutical activity and kinetics, it is crucial to have high-purity colistin active pharmaceutical ingredient (API) in the pharmaceutical industry. This study focused on the metabolic engineering of a natural colistin producer strain to produce colistin with a high titer and purity. Guided by genome mining, we identified Paenibacillus polymyxa ATCC 842 as a natural colistin producer capable of generating a high proportion of colistin A. By systematically inactivating seven non-essential biosynthetic gene clusters (BGCs) of peptide metabolites that might compete precursors with colistin or inhibit colistin production, we created an engineered strain, P14, which exhibited an 82% increase in colistin titer and effectively eliminated metabolite impurities such as tridecaptin, paenibacillin, and paenilan. Additionally, we engineered the L-2,4-diaminobutyric acid (L-2,4-DABA) pathway to further enhance colistin production, resulting in the engineered strain P19, which boosted a remarkable colistin titer of 649.3 mg/L - a 269% improvement compared to the original strain. By concurrently feeding L-isoleucine and L-leucine, we successfully produced high-purity colistin A, constituting 88% of the total colistin products. This study highlights the potential of metabolic engineering in improving the titer and purity of lipopeptide antibiotics in the non-model strain, making them more suitable for clinical use. These findings indicate that efficiently producing colistin API in high purity directly from fermentation can now be achieved in a straightforward manner.

7.
Sci Rep ; 14(1): 16444, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013979

ABSTRACT

Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.


Subject(s)
Acute Kidney Injury , Anti-Bacterial Agents , Carnitine , Colistin , Mitochondria , Animals , Colistin/adverse effects , Colistin/administration & dosage , Acute Kidney Injury/prevention & control , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Carnitine/pharmacology , Carnitine/administration & dosage , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Male , Mitochondrial Permeability Transition Pore/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Cyclosporine
8.
Cureus ; 16(6): e61785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975376

ABSTRACT

INTRODUCTION: Infections caused by Acinetobacter baumannii are a major cause of health concerns in the hospital setting. Moreover, the presence of extreme drug resistance in A. baumannii has made the scenario more challenging due to limited treatment options thereby encouraging the researchers to explore the existing antimicrobial agents to combat the infections caused by them. This study focuses on the susceptibility of multi-drug-resistant A. baumannii (MDR-AB) strains to minocycline and also to colistin. METHODOLOGY: A cross-sectional study was conducted from June 2022 to June 2023. One hundred isolates of​​​​​​ A. baumannii â€‹â€‹â€‹obtained from various clinical samples were sent to Central Laboratory, Department of Microbiology, Sree Balaji Medical College and Hospital, Chrompet, Chennai, India. The antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, 2022. For the standard antibiotics, the disc diffusion method was performed. For minocycline and colistin, the minimum inhibitory concentration (MIC) was determined using an epsilometer strip (E-strip) test. RESULTS: In this study, 100 isolates of A. baumannii were obtained, and 83% of the isolates were multi-drug-resistant. Among the MDR-AB, 50 (60%) were susceptible to minocycline and 40 (48%) were susceptible to colistin. Out of the 40 colistin-susceptible A. baumannii strains, 29 (73%) were susceptible to minocycline with a statistically significant P-value of <0.05. Among the 43 colistin-resistant A. baumannii strains, 21 (53%) were susceptible to minocycline with a statistically significant P-value of <0.05. CONCLUSIONS: When taking into account the expense of treating carbapenemase-producing Gram-negative bacteria, colistin and minocycline can be used as an alternative drug as they have fewer side effects and are more affordable. Minocycline can be used as an alternative to colistin because it is feasible to convert from an injectable to an oral formulation.

9.
Article in English | MEDLINE | ID: mdl-38996871

ABSTRACT

OBJECTIVES: The mechanisms underlying chromosomally encoded colistin resistance in Escherichia coli remain insufficiently investigated. In this study, we investigated the contribution of various pmrB mutations from E. coli clinical isolates to colistin resistance. METHODS: The resistance mechanisms in eight mcr-negative colistin-resistant E. coli isolates obtained from a nationwide surveillance program in Taiwan using recombinant DNA techniques and complementary experiments were investigated. The minimal inhibitory concentrations (MICs) of colistin in the recombinant strains were compared with those in the parental strains. The expression levels of pmrA and pmrK (which are part of the pmrCAB and pmrHFIJKLM operons associated with colistin resistance) were measured using reverse transcription-quantitative real-time polymerase chain reaction. RESULTS: In the complementation experiments, various mutated pmrB alleles from the eight mcr-negative colistin-resistant E. coli strains were introduced into an ATCC25922 mutant with a PmrB deletion, which resulted in colistin resistance. The MIC levels of colistin in the most complemented strains were comparable to those of the parental colistin-resistant strains. Increased expression levels of pmrA and pmrK were consistently detected in most complemented strains. The impact for colistin resistance was confirmed for various novel amino acid substitutions, P94L, G19E, L194P, L98R, and R27L in PmrB from the parental clinical strains. The detected amino acid substitutions are distributed in the different functional domains of PmrB. CONCLUSIONS: Colistin resistance mediated by amino acid substitutions in PmrB is a major chromosomally encoded mechanism in E. coli of clinical origin.

10.
Cureus ; 16(6): e62169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38993404

ABSTRACT

Cerebrospinal fluid shunts are the primary treatment for hydrocephalus. However, prolonged external ventricular drain (EVD) use can lead to central nervous system (CNS) infections such as ventriculitis. In the ICU setting, nosocomial infections with gram-negative, multi-drug resistant (MDR) organisms such as Acinetobacter baumannii (AB) prevail, leading to poor outcomes. AB infections are notably challenging due to their genetic drug resistance. Colistin has been reintroduced for use against gram-negative MDR pathogens but has limitations in CNS penetration when administered intravenously. Therefore, intraventricular (IVT) or intrathecal administration of colistin is recommended to enhance its therapeutic reach within the CNS. We present a case of a 22-year-old male admitted after an electric scooter accident with head trauma and hydrocephalus. A ventriculoperitoneal (VP) shunt was inserted, complicated by a nosocomial neuroinfection. Empiric IV therapy with meropenem and vancomycin was initiated. The VP shunt culture identified AB susceptible only to colistin. Intravenous (IV) colistin was added to meropenem with no significant improvement. The addition of IVT colistin significantly improved the patient's neurological condition and reduced inflammatory markers. The patient experienced one myoclonic seizure during IVT colistin treatment, managed with antiepileptics. After multiple unrelated nosocomial complications, the patient was discharged in good condition to rehabilitation. This case suggests that IVT colistin, combined with IV administration, may be preferable over IV colistin alone. Medical staff should be informed about the correct prevention and care of EVD-associated infections.

11.
Iran J Pharm Res ; 23(1): e143910, 2024.
Article in English | MEDLINE | ID: mdl-39005734

ABSTRACT

Background: Antibiotic-resistant Escherichia coli is one of the major opportunistic pathogens that cause hospital-acquired infections worldwide. These infections include catheter-associated urinary tract infections (UTIs), ventilator-associated pneumonia, surgical wound infections, and bacteraemia. Objectives: To understand the mechanisms of resistance and prevent its spread, we studied E. coli C91 (ST38), a clinical outbreak strain that was extensively drug-resistant. The strain was isolated from an intensive care unit (ICU) in one of Kuwait's largest hospitals from a patient with UTI. Methods: This study used whole-genome sequencing (Illumina, MiSeq) to identify the strain's multi-locus sequence type, resistance genes (ResFinder), and virulence factors. This study also measured the minimum inhibitory concentrations (MIC) of a panel of antibiotics against this isolate. Results: The analysis showed that E. coli C-91 was identified as O99 H30 ST38 and was resistant to all antibiotics tested, including colistin (MIC > 32 mg/L). It also showed intermediate resistance to imipenem and meropenem (MIC = 8 mg/L). Genome analysis revealed various acquired resistance genes, including mcr-1, bla CTX-M-14, bla CTX-M-15, and bla OXA1. However, we did not detect bla NDM or bla VIM. There were also several point mutations resulting in amino acid changes in chromosomal genes: gyrA, parC, pmrB, and ampC promoter. Additionally, we detected several multidrug efflux pumps, including the multidrug efflux pump mdf(A). Eleven prophage regions were identified, and PHAGE_Entero_SfI_NC was detected to contain ISEc46 and ethidium multidrug resistance protein E (emrE), a small multidrug resistance (SMR) protein family. Finally, there was an abundance of virulence factors in this isolate, including fimbriae, biofilm, and capsule formation genes. Conclusions: This isolate has a diverse portfolio of antimicrobial resistance and virulence genes and belongs to ST38 O99 H30, posing a serious challenge to treating infected patients in clinical settings.

12.
Infect Drug Resist ; 17: 2899-2912, 2024.
Article in English | MEDLINE | ID: mdl-39005853

ABSTRACT

Purpose: The World Health Organization has identified Klebsiella pneumoniae (KP) as a significant threat to global public health. The rising threat of carbapenem-resistant Klebsiella pneumoniae (CRKP) leads to prolonged hospital stays and higher medical costs, necessitating faster diagnostic methods. Traditional antibiotic susceptibility testing (AST) methods demand at least 4 days, requiring 3 days on average for culturing and isolating the bacteria and identifying the species using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), plus an extra day for interpreting AST results. This lengthy process makes traditional methods too slow for urgent clinical situations requiring rapid decision-making, potentially hindering prompt treatment decisions, especially for fast-spreading infections such as those caused by CRKP. This research leverages a cutting-edge diagnostic method that utilizes an artificial intelligence-clinical decision support system (AI-CDSS). It incorporates machine learning algorithms for the swift and precise detection of carbapenem-resistant and colistin-resistant strains. Patients and Methods: We selected 4307 KP samples out of a total of 52,827 bacterial samples due to concerns about multi-drug resistance using MALDI-TOF MS and Vitek-2 systems for AST. It involved thorough data preprocessing, feature extraction, and machine learning model training fine-tuned with GridSearchCV and 5-fold cross-validation, resulting in high predictive accuracy, as demonstrated by the receiver operating characteristic and area under the curve (AUC) scores, laying the groundwork for our AI-CDSS. Results: MALDI-TOF MS analysis revealed distinct intensity profiles differentiating CRKP and susceptible strains, as well as colistin-resistant Klebsiella pneumoniae (CoRKP) and susceptible strains. The Random Forest Classifier demonstrated superior discriminatory power, with an AUC of 0.96 for detecting CRKP and 0.98 for detecting CoRKP. Conclusion: Integrating MALDI-TOF MS with machine learning in an AI-CDSS has greatly expedited the detection of KP resistance by approximately 1 day. This system offers timely guidance, potentially enhancing clinical decision-making and improving treatment outcomes for KP infections.

13.
Article in English | MEDLINE | ID: mdl-39004342

ABSTRACT

OBJECTIVES: . Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (KP) and Escherichia coli (EC) isolated in Cambodia between 2016 and 2020. METHODS: . EC (n=223) and KP (n=39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to PCR for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS: . Eighteen isolates (10 KP, 8 EC) revealed colistin resistance with a rate of 5.9% in EC and 34.8% in KP among ESBL isolates, and 1% in EC and 12.5% in KP among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3 and mcr-8.2) and TCS mutations within EC and KP, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of EC (PhoP I47V, PhoQ N352K, PmrB G19R, PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11/18 isolates. CONCLUSIONS: The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in EC and KP. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.

14.
Mol Pharm ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011839

ABSTRACT

Colistin methanesulfonate (CMS) is the less-toxic prodrug of highly nephrotoxic colistin. To develop and understand highly necessary new antibiotic formulations, the hydrolysis of CMS to colistin must be better understood. Herein, with the addition of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) to CMS, we show that we can follow the hydrolysis kinetics, employing small-angle X-ray scattering (SAXS) through complex coacervation. During this hydrolysis, hydroxy methanesulfonate (HMS) groups from CMS are cleaved, while the newly formed cationic amino groups complex with the anionic charge from the PMAA block. As the hydrolysis of HMS groups is slow, we can follow the complex coacervation process by the gradual formation of complex micelles containing activated antibiotics. Combining mass spectrometry (MS) with SAXS, we quantify the hydrolysis as a function of pH. Upon modeling the kinetic pathways, we found that complexation only happens after complete hydrolysis into colistin and that the process is accelerated under acidic conditions. At pH = 5.0, effective charge switching was identified as the slowest step in the CMS conversion, constituting the rate-limiting step in colistin formation.

15.
Foods ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998565

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is one of the most important foodborne pathogens, and the rise of antibiotic resistance to it is a significant threat to global public health. The purpose of this study is to investigate the prevalence, molecular characterization, and antibiotic resistance of STEC isolated from raw meat in Vietnam. The findings in this study showed that the prevalence of STEC in raw beef, pork, and chicken meat was 9.72% (7/72), 5.56% (4/72), and 1.39% (1/72), respectively. The STEC isolates were highly resistant to ampicillin (91.67%) and tetracycline (91.67%), followed by trimethoprim/sulfamethoxazole (83.33%), streptomycin (75%), and florfenicol (66.67%). The incidence of STEC virulence-associated genes, including stx1, stx2, eae, and ehxA, was 8.33% (1/12), 91.67% (11/12), 33.33% (4/12), and 58.33% (7/12), respectively. STEC serogroups O157, O26, and O111 were detected in 3 out of 12 STEC isolates. Two isolates were found to be ESBL producers carrying the blaCTX-M-55 gene, and three isolates were colistin-resistant strains harboring the mcr-1 gene. Notably, a STEC O111 isolate from chicken meat harbored both the blaCTX-M-55 and mcr-1 genes.

16.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998921

ABSTRACT

The emergence of antimicrobial resistance represents a serious threat to public health and for infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role of "last resort" agent against MDR-GN. Despite the revolutionary perspective of treatment with this old antimicrobial molecule, many questions remain open regarding the emergence of novel phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years, several forward steps have been made in the understanding of the resistance determinants, clinical usage, and pharmacological dosage of this molecule; however, different points regarding the role of colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet well defined. In this review, we summarize the mode of action, the emerging resistance determinants, and its optimal administration in the treatment of infections that are difficult to treat due to MDR Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Colistin/therapeutic use , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Animals
17.
Infect Genet Evol ; 123: 105636, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972619

ABSTRACT

Mobile colistin resistance (mcr) genes are pivotal contributors to last-line of antimicrobial resistance in human infections. Shewanella, historically recognized as a natural environmental bacterium with metal reduction capabilities, recently has been observed in clinical settings. However, limited knowledge has been explored on genetic differences between strains from non-clinical and clinical strains. In this study, we conducted the whole genome sequencing on six Arctic strains, illustrated the phylogenetic relationships on published 393 Shewanella strains that categorized the genus into four lineages (L1 to L4). Over 86.4% of clinical strain group (CG) strains belonged to L1 and L4, carrying mcr-4 genes and a complete metal-reduction pathways gene cluster. Remarkably, a novel Arctic Shewanella strain in L3, exhibits similar genetic characteristics with CG strains that carried both mcr-4 genes and a complete metal reduction pathway gene cluster. It raised concerns about the transmission ability from environment to clinic setting causing in the potential infections, and emphasized the need for monitoring the emerging strains with human infections.

18.
BMC Infect Dis ; 24(1): 561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840122

ABSTRACT

BACKGROUND: Treatment of carbapenem-resistant Enterobacterales (CRE) infections in low-resource settings is challenging particularly due to limited treatment options. Colistin is the mainstay drug for treatment; however, nephrotoxicity and neurotoxicity make this drug less desirable. Thus, mortality may be higher among patients treated with alternative antimicrobials that are potentially less efficacious than colistin. We assessed mortality in patients with CRE bacteremia treated with colistin-based therapy compared to colistin-sparing therapy. METHODS: We conducted a cross-sectional study using secondary data from a South African national laboratory-based CRE bacteremia surveillance system from January 2015 to December 2020. Patients hospitalized at surveillance sentinel sites with CRE isolated from blood cultures were included. Multivariable logistic regression modeling, with multiple imputations to account for missing data, was conducted to determine the association between in-hospital mortality and colistin-based therapy versus colistin-sparing therapy. RESULTS: We included 1 607 case-patients with a median age of 29 years (interquartile range [IQR], 0-52 years) and 53% (857/1 607) male. Klebsiella pneumoniae caused most of the infections (82%, n=1 247), and the most common carbapenemase genes detected were blaOXA-48-like (61%, n=551), and blaNDM (37%, n=333). The overall in-hospital mortality was 31% (504/1 607). Patients treated with colistin-based combination therapy had a lower case fatality ratio (29% [152/521]) compared to those treated with colistin-sparing therapy 32% [352/1 086]) (p=0.18). In our imputed model, compared to colistin-sparing therapy, colistin-based therapy was associated with similar odds of mortality (adjusted odds ratio [aOR] 1.02; 95% confidence interval [CI] 0.78-1.33, p=0.873). CONCLUSION: In our resource-limited setting, the mortality risk in patients treated with colistin-based therapy was comparable to that of patients treated with colistin-sparing therapy. Given the challenges with colistin treatment and the increasing resistance to alternative agents, further investigations into the benefit of newer antimicrobials for managing CRE infections are needed.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Carbapenem-Resistant Enterobacteriaceae , Colistin , Enterobacteriaceae Infections , Humans , Colistin/therapeutic use , Colistin/pharmacology , Cross-Sectional Studies , Male , South Africa/epidemiology , Female , Middle Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Bacteremia/drug therapy , Bacteremia/mortality , Bacteremia/microbiology , Young Adult , Adolescent , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/mortality , Enterobacteriaceae Infections/microbiology , Child, Preschool , Infant , Child , Infant, Newborn , Hospital Mortality , Carbapenems/therapeutic use , Carbapenems/pharmacology , Hospitals
19.
J Infect Chemother ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38839032

ABSTRACT

OBJECTIVES: Carbapenem-resistant organisms (CROs) are a significant public health threat globally, particularly in countries like India with high antibiotic resistance rates. The current study investigates the prevalence of CROs, detects resistance mechanisms using phenotypic methods and assesses the efficacy of newer antibiotics against CROs. METHODS: A prospective study conducted at a tertiary care hospital in India during 2021-23. Clinical specimens were processed and bacterial identification was performed using MALDI-TOF mass spectrometry followed by antimicrobial susceptibility testing using CLSI guidelines against a plethora of newer antibiotics for CROs. Carbapenemase production was detected using phenotypic methods, and the presence of the mcr-1 gene was assessed by real-time PCR. RESULTS: During the study period, predominantly (70 %) Gram-negative bacteria were isolated; amongst which 5692 strains were carbapenem-resistant, wherein resistance to different carbapenems ranged from 34.1% to 79 %. Majority of the carbapenemase producers were metallo-ß-lactamases (MBL) producers (75 %). Colistin resistance was noted in 5.4 % of selected carbapenem-resistant isolates. Among newer antibiotics, cefiderocol demonstrated the lowest resistance rates (0-14 %), while resistance to newer ß-lactam/ß-lactamase inhibitor combinations was very high in carbapenem-resistant isolates. Fosfomycin, minocycline and tigecycline, each showing variable efficacy depending on the site of infection. Moreover, newer ß-lactam/ß-lactamase inhibitor combinations offer restricted benefits due to widespread prevalence of MBL in the region. CONCLUSION: The escalating prevalence of CROs in India underscores the urgency for alternative treatment options beyond colistin. Hence, highlighting the critical importance of developing effective strategies to combat carbapenem resistance.

20.
Front Med (Lausanne) ; 11: 1400757, 2024.
Article in English | MEDLINE | ID: mdl-38863886

ABSTRACT

Background: Some cohort studies have explored the effects and safety of polymyxin B (PMB) in comparison to other antibiotics for the treatment of nosocomial infections, yielding inconsistent results. This systematic review aims to explore the effectiveness and safety of PMB and compared it with other antibiotics. Methods: A systematic literature search was conducted in PubMed, Embase, the Cochrane Library, and Web of Science, searching specific terms to identify quantitative cohort studies or RCTs that compared the effects of PMB with other antibiotics in terms of their efficacy and safety. The Newcastle-Ottawa Scale (NOS) was conducted to evaluate the risk of bias of observational studies. Odds ratios with 95% confidence intervals were used for outcome assessment. We evaluated heterogeneity using the I 2 test. Results: A total of 22 observational trials were included in the analysis. The PMB group had a higher mortality rate compared to the control group (odds ratio: 1.84, 95% CI: 1.36-2.50, p<0.00001, I 2 = 73%). while, the ceftazidime-avibactam group demonstrated a distinct advantage with lower mortality rates, despite still exhibiting high heterogeneity (odds ratio 2.73, 95% confidence interval 1.59-4.69; p = 0.0003; I 2 = 53%). Additionally, the PMB group had a lower nephrotoxicity rate compared to the colistin group but exhibited high heterogeneity in the results (odds ratio 0.58, 95% CI 0.36-0.93; p = 0.02; I 2 = 73%). Conclusion: In patients with nosocomial infections, PMB is not superior to other antibiotics in terms of mortality, specifically when compared to ceftazidime-avibactam. However, PMB demonstrated an advantage in terms of nephrotoxicity compared to colistin.

SELECTION OF CITATIONS
SEARCH DETAIL
...