Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Cureus ; 16(7): e63632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39092330

ABSTRACT

AIM: This study aims to compare and assess the compression strength, microhardness, and surface texture of two sets of materials: mineral trioxide aggregate (MTA) PlusTM and bacterial cellulose nanocrystal (BCNC)-reinforced MTA PlusTM. MATERIALS AND METHODS: According to the ASTM E384 standard, the cylindrical molds made of plexiglass with an internal diameter of 6 mm and a height of 4 mm were fabricated using computer numerical control laser cutting. A total of 20 samples (n=10) in each group were considered in this experimental study: Group I (control group) MTA PlusTM (Prevest DenPro Limited, India) and Group II (experimental group) BCNC (Vedayukt India Private Limited, India)-reinforced MTA PlusTM. After preparation, the molds were incubated at 37°C in a fully saturated condition for about 24 hours, and then the compression strength, microhardness, and scanning electron microscopy analyses were performed at different magnifications. The obtained data were then statistically analyzed. RESULTS: Quantitative analysis revealed that there is a statistically significant difference between MTA PlusTM and BCNC-reinforced MTA PlusTM  (p<0.002). The Wilcoxon signed-rank test and Mann-Whitney U-test revealed that BCNC-reinforced MTA PlusTM  showed significantly higher compression strength (33.80±3.83 MPa, p=0.00) and surface microhardness (642.85±24.00 µm, p=0.00) than the control group. CONCLUSION: Based on our findings, it was concluded that there is a statistically significant difference between both study groups. Thus, incorporating BCNC into the MTA PlusTM  significantly increased the compression strength and surface microhardness of the MTA PlusTM cement. CLINICAL SIGNIFICANCE: Numerous dental applications have been investigated for bacterial cellulose. Many benefits of bacterial cellulose are available, which include its effects on moldability, low cost, high water retention capacity, biocompatibility, and biodegradability. Furthermore, the addition of BCNC to MTA PlusTM  accelerates the material's hardening process and decreases its setting time, which in turn shortens clinical chairside procedural timing and thereby improves patient satisfaction.

2.
Arch Osteoporos ; 19(1): 76, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120732

ABSTRACT

This study aimed to assess the association between composite indices of femoral neck strength and the odds of hip fracture in Chinese adults.After adjusting for confounders, higher values of CSI and ISI were associated with a lower risk of fracture. They may provide useful information for improving hip fracture risk assessment. PURPOSE: With the increased incidence of hip fractures worldwide, numerous studies have reported that composite indices of femoral neck strength can improve hip fracture risk assessment. This study aimed to assess the association between composite indices of femoral neck strength and the odds of hip fracture in Chinese adults. METHODS: This retrospective cross-sectional study conducted at Changzhou Second People's Hospital included 937 Chinese adults (248 with hip fractures). After overnight fasting for ≥ 8 h, blood samples were collected from all participants within 24 h of admission. Composite indices of femoral neck strength were derived by combining bone mineral density, weight, and height with femoral axis length and width, which were measured by dual-energy X-ray absorptiometry. RESULTS: In total, 937 participants (293 men and 644 women) were enrolled. The mean age was 68.3 years (SD 10.5). After adjusting for confounders, higher values of CSI and ISI were associated with a lower odd of hip fracture. Increase in CSI (per 1 g/m·kg) was associated with a 46% decrease in the odd of hip fracture (OR = 0.54; 95% CI, 0.39-0.74), and increase in ISI (per 0.1 g/m·kg) was associated with an 82% decrease (OR, 0.18; 95% CI, 0.11-0.30). Effect sizes of CSI and ISI on the odds of hip fracture remained robust and reliable in subgroup analyses. CONCLUSIONS: Increased CSI and ISI were associated with a lower odd of hip fracture, especially in women, suggesting that composite indices of femoral neck strength may provide useful information for improving hip fracture risk assessment.


Subject(s)
Bone Density , Femur Neck , Hip Fractures , Humans , Male , Female , Hip Fractures/epidemiology , Femur Neck/diagnostic imaging , Cross-Sectional Studies , Aged , Retrospective Studies , Middle Aged , Absorptiometry, Photon , China/epidemiology , Risk Assessment/methods , Aged, 80 and over , Risk Factors
3.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793156

ABSTRACT

Hollow-strut metal lattice structures are currently attracting extensive attention due to their excellent mechanical performance. Inspired by the node structure of bamboo, this study aimed to investigate the mechanical performance of the gradient hollow-strut octet lattice structure fabricated by laser powder bed fusion (LPBF). The effect of geometrical parameters on the yield strength, Young's modulus and energy absorption of the designed octet unit cells were studied and optimized by FEA analysis. The hollow-strut geometrical parameters that deliver the best mechanical property combinations were identified, and the corresponding unit cells were then redesigned into the 3 × 3 × 3 type lattice structures for experimental evaluations. Compression tests confirmed that the designed gradient hollow-strut octet lattice structures demonstrated superior mechanical properties and deformation stability than their solid-strut lattice structure counterparts. The underlying deformation mechanism analysis revealed that the remarkably enhanced bending strength of the gradient hollow-strut lattice structure made significant contributions to its mechanical performance improvement. This study is envisaged to shed light on future hollow-strut metal lattice structure design for lightweight applications, with the final aim of enhancing the component's mechanical properties and/or lowering its density as compared with the solid-strut lattice structures.

4.
Materials (Basel) ; 17(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611972

ABSTRACT

Although cemented soil as a subgrade fill material can meet certain performance requirements, it is susceptible to capillary erosion caused by groundwater. In order to eliminate the hazards caused by capillary water rise and to summarize the relevant laws of water transport properties, graphene oxide (GO) was used to improve cemented soil. This paper conducted capillary water absorption tests, unconfined compressive strength (UCS) tests, softening coefficient tests, and scanning electron microscope (SEM) tests on cemented soil using various contents of GO. The results showed that the capillary water absorption capacity and capillary water absorption rate exhibited a decreasing and then increasing trend with increasing GO content, while the UCS demonstrated an increasing and then decreasing trend. The improvement effect is most obvious when the content is 0.09%. At this content, the capillary absorption and capillary water absorption rate were reduced by 25.8% and 33.9%, respectively, and the UCS at 7d, 14d, and 28d was increased by 70.32%, 57.94%, and 61.97%, respectively. SEM testing results demonstrated that GO reduces the apparent void ratio of cemented soil by stimulating cement hydration and promoting ion exchange, thereby optimizing the microstructure and improving water resistance and mechanical properties. This research serves as a foundation for further investigating water migration and the appropriate treatment of GO-modified cemented soil subgrade.

5.
Article in English | MEDLINE | ID: mdl-38593385

ABSTRACT

The compressive performance of organic fiber has always been a key problem, limiting its development. In this paper, silicon oxide, alumina, and titanium oxide particles were separately deposited on the surface of high-strength and high-modulus polyimide (PI) fibers to form a structural supporting shell by using a magnetron sputtering method. The theoretical thickness was calculated by thermogravimetric analysis in good agreement with the actual thickness determined from scanning electron microscopy. The mechanics, surface, and interface properties of the measured fibers were analyzed mainly from the aspects of surface energy, interfacial shear strength (IFSS), and compression strength. The results showed that after magnetron sputtering, the inorganic shells were uniformly deposited on the surface of PI fiber, resulting in an increase in the content of inorganic elements as well as the roughness. As a result, the surface energy and IFSS of silica-coated fiber was increased by 174 and 85.6%, respectively, and compression strength was increased by 45.7%. This study provides a new approach for improving the interface property and compression strength of high-strength and high-modulus PI-fiber-reinforced composites.

6.
Nanomaterials (Basel) ; 14(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535672

ABSTRACT

This paper investigated the effect of nano-calcium silicate hydrate (n-C-S-H) on the early compressive strength of mineral powder-cement systems under low-temperature curing conditions (5 °C). The hydration mechanism of n-C-S-H in the mineral powder-cement system at different dosages was analyzed by combining it with XRD, DSC-TG, MIP, and other techniques. The results show that n-C-S-H significantly enhances the early compressive strength of the mineral powder-cement system under low-temperature curing conditions, with optimal results observed at a dosage of 1.0% (mass fraction). The XRD, DSC-TG, and MIP tests reveal that n-C-S-H promotes the hydration of the mineral powder cement, accelerates the generation rate of hydration products, reduces the porosity of the hardened mineral powder-cement slurry, and improves the system's density.

7.
Nanomaterials (Basel) ; 14(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38470749

ABSTRACT

Among the various reinforcement phases available in Cu-based composites, the unique layered structure and easy diffusion of A-layer atoms make MAX phases more suitable for reinforcing a copper matrix than others. In this study, Cu-coated Ti3AlC2 particles (Cu@Ti3AlC2) were prepared through electroless plating, and Cu@Ti3AlC2/Cu composites were fabricated via vacuum hot-press sintering. The phase composition and microstructure of both Cu@Ti3AlC2 powder and composites were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrate the creation of successful electroless copper plating to obtain a Cu coating on Ti3AlC2 particles. At 850 °C, a small amount of Ti3AlC2 particles decompose to form TiCx, while Al atoms from the A layer of MAX phase diffuse into the Cu matrix to form a solid solution with Cu(Al). The test results reveal that the density of the Cu@Ti3AlC2/Cu composite reaches 98.5%, with a maximum compressive strength of 705 MPa, which is 8.29% higher than that of the Ti3AlC2/Cu composite. Additionally, the compressive strain reaches 37.6%, representing an increase of 12.24% compared to that exhibited by the Ti3AlC2/Cu composite.

8.
Polymers (Basel) ; 16(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38337263

ABSTRACT

In order to study the improvement effect of nano-clay and polypropylene fiber on the mechanical properties of recycled aggregates, unconfined compression tests and triaxial shear tests were conducted. The experimental results show that adding polypropylene fibers to recycled aggregates increases the unconfined compressive strength by 27% and significantly improves ductility. We added 6% nano-clay to fiber-reinforced recycled aggregates, which increased the unconfined compressive strength of the recycled aggregates by 49% and the residual stress by 146%. However, the ductility decreased. Under low confining pressures, with the addition of nano-clay, the peak deviatoric stress strength of the fiber-reinforced recycled aggregates first decreased and then increased. When the nano-clay content was 8%, this reached a maximum value. However, under high confining pressures, the recycled aggregate particles were tightly interlocked, so that the improvement effect of the fiber and nano-clay was not obvious. As more nano-clay was added, the friction angle of the fiber-reinforced recycled aggregates decreased, while the cohesion increased. When the content of nano-clay was 8%, the cohesive force increased by 110%. The results of this research indicate that adding both polypropylene fibers and nano-clay to recycled aggregates has a better improvement effect on their strength characteristics than adding only polypropylene fibers. This study can provide a reference for improving the mechanical properties of recycled aggregates and the use of roadbeds.

9.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334520

ABSTRACT

This study investigates the development of polyvinyl alcohol (PVA) gel matrices for biomass immobilization in wastewater treatment. The PVA hydrogels were prepared through a freezing-thawing (F-T) cross-linking process and reinforced with high surface area nanoparticles to improve their mechanical stability and porosity. The PVA/nanocomposite hydrogels were prepared using two different nanoparticle materials: iron oxide (Fe3O2) and titanium oxide (TiO2). The effects of the metal oxide nanoparticle type and content on the pore structure, hydrogel bonding, and mechanical and viscoelastic properties of the cross-linked hydrogel composites were investigated. The most durable PVA/nanoparticles matrix was then tested in the bioreactor for the biological treatment of wastewater. Morphological analysis showed that the reinforcement of PVA gel with Fe2O3 and TiO2 nanoparticles resulted in a compact nanocomposite hydrogel with regular pore distribution. The FTIR analysis highlighted the formation of bonds between nanoparticles and hydrogel, which caused more interaction within the polymeric matrix. Furthermore, the mechanical strength and Young's modulus of the hydrogel composites were found to depend on the type and content of the nanoparticles. The most remarkable improvement in the mechanical strength of the PVA/nanoparticles composites was obtained by incorporating 0.1 wt% TiO2 and 1.0 wt% Fe2O3 nanoparticles. However, TiO2 showed more influence on the mechanical strength, with more than 900% improvement in Young's modulus for TiO2-reinforced PVA hydrogel. Furthermore, incorporating TiO2 nanoparticles enhanced hydrogel stability but did not affect the biodegradation of organic pollutants in wastewater. These results suggest that the PVA-TiO2 hydrogel has the potential to be used as an effective carrier for biomass immobilization and wastewater treatment.

10.
Polymers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139894

ABSTRACT

Lightweight concrete is widely used in the construction industry due to its low density and high strength. In this paper, lightweight concrete was prepared by a simple two-step method. Firstly, the light calcium carbonate reinforced epoxy macrospheres (LCR-EMS) material was obtained by adhering calcium lighter carbonate powder to the expanded polystyrene foam spheres (EPS) material using the "balling method". In the second step, the LCR-EMS was mixed with water, cement, and the hollow glass microspheres (HGMS) material using the "molding method" to obtain lightweight concrete. The combination of macroscopic photographs and microscopic morphology shows that the LCR-EMS material itself is uniformly encapsulated and well bonded to the matrix. Test results show that the density of the lightweight concrete decreases with an increase in the volume fraction of stacked LCR-EMS, the diameter, and the proportion of HGMS in the matrix, but it decreases with a decrease in the number of layers of LCR-EMS. The compressive strength of lightweight concrete exhibits a completely opposite trend. When three layers of LCR-EMS were used as filler material, the density and compressive strength of the concrete were 1.246 g/cm3 and 8.19 MPa, respectively. The density and maximum compressive strength of lightweight concrete were 1.146 g/cm3 and 6.37 Mpa, respectively, when filled with 8-9 mm-2L-90 svol% of LCR-EMS and 40 wt% of HGMS in the matrix. Compared with lightweight concrete filled with 90% EPS, the density increased by 20% while the compressive strength increased by 300%.

11.
Materials (Basel) ; 16(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687432

ABSTRACT

The use of fibres applied to concrete in order to improve its properties is widely known. Nowadays, research is not only focused on improving mechanical properties but also on the environmental implications. The aim of this research was a mechanical and environmental comparison between different types of fibres. For this purpose, commercial fibres of three materials were used: low carbon steel, modified polyolefins, and glass fibre. In order to improve the sustainability of the sector, we also analysed and compared the performance of using a waste product, such as fibres from machining operations on lathes. For the evaluation of the mechanical properties, compression and flexural tests were carried out. The results show that the use of low carbon steel fibres increases the flexural strength by 4.8%. At the environmental level, and in particular for impact categories such as the Global Warming Potential (GWP), lathe waste fibres prove to be the most suitable. For instance, compared to glass fibres, CO2 emissions are reduced by 14.39%. This is equivalent to a total of 38 kg CO2 emissions per m3 of reinforced concrete. In addition to avoiding the consumption of 482 MJ/m3 of fossil fuels, the results of the research indicate the feasibility of using waste fibres as a substitute for commercial fibres, contributing to an improved environmental balance without losing mechanical performance.

12.
Environ Sci Pollut Res Int ; 30(46): 102972-102985, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37676458

ABSTRACT

Phosphogypsum (PG) stockpiles occupied a large amount of land resources, and serious environmental pollution problems have attracted the attention of countries around the world. Cemented backfill can reduce the environmental problems caused by tailings stockpiles and is an important development trend in green mine construction. To investigate the effect of binder type on the performance of PG cemented backfill, this paper used ground granulated blast furnace slag (GGBFS) to substitute part of Portland cement (PC) as binder and studied the effect of different ratios of binder on the uniaxial compressive strength (UCS), surface crack extension, acoustic emission (AE) characteristics, and microstructure of PG cemented backfill. The results show that substituting part of PC with GGBFS is beneficial to improve the mechanical properties of PG cemented backfill. When PC was substituted by 50% of GGBFS, the 28d UCS of the backfill was increased from 1.535 to 4.539 MPa. Furthermore, the UCS of the backfill gradually increased as the GGBFS substitution level increased, and more AE signals could be monitored during uniaxial compression. Compared with PC, the sulfate in PG participates in the hydration reaction of GGBFS, more hydrated calcium-aluminum-silicate-hydrate (C-A-S-H) gels and ettringite (AFt) are formed, and the microstructure of the backfill is denser, and the required strength can be obtained with less binder. Thus, substituting part PC with GGBFS as a binder can provide an economical and environmentally friendly alternative for the consumption and reuse of large quantities of PG.

13.
Gels ; 9(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37754401

ABSTRACT

Synthesis of methylsilsesquioxane aerogels by ambient pressure drying instead of supercritical drying has recently emerged as a major trend, but the issues of low mechanical strength and unstable performance still need to be resolved. This work reveals the microscopic formation mechanisms of gel skeleton based on the kinetic characteristics of methyltrimethoxysilane (MTMS) precursor hydrolysis and the associated sol-gel reactions. The effects of oxalic acid concentration (cOA) and hydrolysis time of MTMS solution (th) on the gelation time, morphologies, microstructures, chemical structure, and compression properties of the as-synthesized methylsilsesquioxane aerogels are investigated. The optimal cOA and th are 38.4 mmol/L and 120 min, respectively, endowing the methylsilsesquioxane aerogels with a compression strength of 0.170 MPa and a maximum compression strain of 61.2%. Precise control of the hydrolysis conditions ensures the formation of branched particle-to-particle networks, which is crucial for maximizing the compression properties of methylsilsesquioxane aerogels synthesized under industry-relevant conditions.

14.
Data Brief ; 49: 109461, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37577731

ABSTRACT

This data article describes the stress-strain curves, energy absorption and energy absorption efficiency of open-cell AlSi10Mg materials and open-cell AlSi10Mg-SiC composites with different pore sizes and strain rates. The data were obtained by quasi-static compression loading up to 60% strain at strain rates of 0.01 and 0.001 s-1 according to ISO 13,314:2011 standard. The data can be used to compare the effects of pore size and strain rate on the compressive properties of the materials. The data are related to the research article entitled "Fabrication, Experimental Investigation and Prediction of Wear Behavior of Open-Cell AlSi10Mg-SiC Composite Materials" (Kolev, M., Drenchev, L., & Petkov, V. (2023). Fabrication, Experimental Investigation and Prediction of Wear Behavior of Open-Cell AlSi10Mg-SiC Composite Materials. Metals, 13(4), 814. MDPI AG. Retrieved from http://dx.doi.org/10.3390/met13040814).

15.
Materials (Basel) ; 16(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512406

ABSTRACT

The article presents a simplified method for determining the strength of corrugated board packaging subjected to dynamic transport loads. The proposed algorithm consists of several calculation steps: (1) a static analysis of the compressive strength of the package, (2) an analysis of random vibrations in the frequency domain used to determine the resonance frequencies and (3) a dynamic analysis of the package loaded with computed resonant frequencies. For this purpose, numerical models of the static compression test of the packaging before and after the dynamic analysis of the package subjected to general transport loads were developed. In order to validate the model, laboratory packaging compression tests were also performed for samples of boxes using three-layer cardboard. Due to this, it was possible to verify the numerical simulation results of the compression tests for several box geometries. This, in turn, allowed for the development of a method based on dynamic and post-dynamic (static) numerical analyses, permitting a high-accuracy determination of the resistance of the selected packaging to vibrations and dynamic loads. The results of the (experimentally validated) numerical analysis proved the usefulness of the simplified method presented herein for precise estimation of the load capacity of various packages dynamically loaded during transport.

16.
Polymers (Basel) ; 15(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299283

ABSTRACT

Composite laminates are susceptible to impact events during use and maintenance, affecting their safety performance. Edge-on impact is a more significant threat to laminates than central impact. In this work, the edge-on impact damage mechanism and residual strength in compression were investigated using experimental and simulation methods by considering variations in impact energy, stitching, and stitching density. The damage to the composite laminate after edge-on impact was detected in the test by visual inspection, electron microscopic observation, and X-ray computed tomography techniques. The fiber and matrix damage were determined according to the Hashin stress criterion, while the cohesive element was used to simulate the interlaminar damage. An improved Camanho nonlinear stiffness discount was proposed to describe the stiffness degradation of the material. The numerical prediction results matched well with the experimental values. The findings show that the stitching technique could improve the damage tolerance and residual strength of the laminate. It can also effectively inhibit crack expansion, and the effect increases with increasing suture density.

17.
Gels ; 9(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37232998

ABSTRACT

In previous work of this group, a structural lightweight concrete was developed by embedding silica aerogel granules in a high-strength cement matrix. This concrete, called high-performance aerogel concrete (HPAC), is a lightweight building material characterized by its simultaneous high compressive strength and very low thermal conductivity. Besides these features, high sound absorption, diffusion permeability, water repellence and fire resistance qualify HPAC as an interesting material for the construction of single-leaf exterior walls without any further insulation. During the development of HPAC, the type of silica aerogel was found to majorly influence both fresh and hardened concrete properties. To clarify these effects, a systematic comparison of SiO2 aerogel granules with different levels of hydrophobicity as well as different synthesis methods was conducted in the present study. The granules were analyzed for their chemical and physical properties as well as their compatibility in HPAC mixtures. These experiments included determinations of pore size distribution, thermal stability, porosity, specific surface and hydrophobicity, as well as fresh/hardened concrete experiments such as measurements of compressive strength, flexural bending strength, thermal conductivity and shrinking behavior. It was found that the type of aerogel has a major influence on the fresh and hardened concrete properties of HPAC, particularly compressive strength and shrinkage behavior, whereas the effect on thermal conductivity is not very pronounced.

18.
Materials (Basel) ; 16(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176322

ABSTRACT

Sandstone is widely used a construction and building material. However, its uniaxial tensile strength (UTS) is not adequately understood. To characterize the uniaxial tensile strength of natural sandstone, three groups of specimens were fabricated for four-point bending, uniaxial compressive, and tensile tests. To characterize the evolution of the stress-strain profiles obtained via these tests, representative expressions were developed in terms of normalized strain and strength. The magnitude of the uniaxial tensile strength exceeded that of the four-point bending strength, indicating that the uniaxial tensile strength cannot be represented by the four-point bending strength. The experimental ratio of uniaxial tensile and compression strength (33-41) was underestimated by the empirical expressions reported in the literature. The suggested correction coefficient for the FBS is 0.25. The compressive modulus (Ec) was generally identical to the experimental results published in the literature, whereas the tensile modulus (Et) was overestimated. The experimental modular ratio, Et/Ec, ranged from 0.12 to 0.14; it was not sensitive to Poisson's ratio, but it increased slightly with the compressive modulus. This work can serve as a reference for computing the load-bearing capacity of sandstone components under tension.

19.
Materials (Basel) ; 16(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109947

ABSTRACT

The aim of the present study was to investigate the influence of the mechanical properties of three different calcium-silicate-based cements on the stress distribution of three different retrograde cavity preparations. Biodentine™ "BD", MTA Biorep "BR", and Well-Root™ PT "WR" were used. The compression strengths of ten cylindrical samples of each material were tested. The porosity of each cement was investigated by using micro-computed X-ray tomography. Finite element analysis (FEA) was used to simulate three retrograde conical cavity preparations with an apical diameter of 1 mm (Tip I), 1.4 mm (Tip II), and 1.8 mm (Tip III) after an apical 3 mm resection. BR demonstrated the lowest compression strength values (17.6 ± 5.5 MPa) and porosity percentages (0.57 ± 0.14%) compared to BD (80 ± 17 MPa-1.22 ± 0.31%) and WR (90 ± 22 MPa-1.93 ± 0.12%) (p < 0.05). FEA demonstrated that the larger cavity preparation demonstrated higher stress distribution in the root whereas stiffer cement demonstrated lower stress in the root but higher stress in the material. We can conclude that a respected root end preparation associated with cement with good stiffness could offer optimal endodontic microsurgery. Further studies are needed to define the adapted cavity diameter and cement stiffness in order to have optimal mechanical resistance with less stress distribution in the root.

20.
Odovtos (En linea) ; 25(1)abr. 2023.
Article in English | LILACS, SaludCR | ID: biblio-1422197

ABSTRACT

This study evaluated selected structural and physical properties, such as degree of conversion (DC), Vickers hardness (VHN), and compression strength (CS), of three new dual-cure bulk-fill resin-based composites (RBCs; ACTIVA, HyperFIL, and Fill-Up) and compared them to those of a conventional RBC (Filtek Z250) at three clinically relevant depths. Samples (n=180) were prepared in three depths (2,4, and 6mm). Fourier-transform infrared spectroscopy (FTIR) analysis and VHN and CS tests were performed. The DC value was calculated by considering the relative change in the aliphatic C=C peaks. The fractured surfaces of representative samples were characterized using scanning electron microscopy (SEM). Data were statistically evaluated using two-way analysis of variance and post hoc Bonferroni tests (p<0.05). According to the VHN results, Filtek Z250 showed the highest bottom/top hardness ratio (97.94±1.01) at 2mm thickness and ACTIVA showed the lowest bottom/top hardness ratio (43.48±5.64) at 6mm thickness (p<0.001). According to the FTIR results, the DC decreased with increasing thickness in all materials (p<0.05). Filtek Z250 showed the highest (301±12.4 MPa) and ACTIVA exhibited the lowest (232±17.2 MPa) CS values at 2mm thickness (p<0.05). The lowest CS values were obtained for ACTIVA, and the highest values were obtained for Filtek Z250 for samples with thicknesses of 4 and 6mm, respectively (p<0.05). The structural features of restorative composites, such as the resin chemistry and filler type and content, and the operational parameters (i.e., material thickness and curing conditions) strongly affect crosslinking reactions and thus the DC, VHN, and CS values.


Este estudio evaluó propiedades físicas y estructurales, como el grado de conversión (DC), la dureza Vickers (VHN) y la resistencia a la compresión (CS), de tres nuevos compósitos a base de resina de curado dual tipo bulk (RBC; ACTIVA , HyperFIL y Fill-Up) y los comparó con los de una resina compuesta convencional (Filtek Z250) en tres profundidades clínicamente relevantes. Se prepararon muestras (n=180) en tres profundidades (2,4 y 6mm). Se realizaron análisis de espectroscopia infrarroja por transformada de Fourier (FTIR) y pruebas VHN y CS. El valor de DC se calculó considerando el cambio relativo en los picos alifáticos C=C. Las superficies fracturadas de muestras representativas se caracterizaron mediante microscopía electrónica de barrido (MEB). Los datos se evaluaron estadísticamente mediante análisis de varianza de dos vías y pruebas post hoc de Bonferroni (p<0,05). De acuerdo con los resultados de VHN, Filtek Z250 mostró la relación de dureza inferior/superior más alta (97,94±1,01) con un espesor de 2mm y ACTIVA mostró la relación de dureza inferior/superior más baja (43,48±5,64) con un espesor de 6mm (p<0,001). De acuerdo con los resultados de FTIR, la DC disminuyó al aumentar el espesor en todos los materiales (p<0,05). Filtek Z250 mostró los valores de CS más altos (301±12,4 MPa) y ACTIVA los más bajos (232±17,2 MPa) a 2mm de espesor (p<0,05). Los valores más bajos de CS se obtuvieron para ACTIVA y los valores más altos para Filtek Z250 para muestras con espesores de 4 y 6mm, respectivamente (p<0,05). Las características estructurales de las resinas compuestas de restauración, como la química; además del tipo y contenido del relleno, y los parámetros operativos (es decir, el espesor del material y las condiciones de curado) afectan en gran medida las reacciones de interacción química y, por lo tanto, los valores de DC, VHN y CS.


Subject(s)
Microscopy, Electron, Scanning , Composite Resins/analysis , Compressive Strength
SELECTION OF CITATIONS
SEARCH DETAIL