Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.396
Filter
1.
EFORT Open Rev ; 9(8): 762-772, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087510

ABSTRACT

Periacetabular osteotomy is the gold standard treatment for acetabular dysplasia. The great variability of acetabular dysplasia requires a personalized preoperative planning improved by 3D reconstruction and computer-assisted surgery. To plan the displacement of the acetabular fragment by a pelvic osteotomy, it is necessary to define a reference plane and a method to characterize 3D acetabular orientation. A scoping review was performed on PubMed to search for articles with a method to characterize the acetabulum of native hips in a 3D reference frame. Ninety-eight articles out of 3815 reports were included. Three reproducible reference planes were identified: the anterior pelvic plane, the Standardization and Terminology Committee plane used in gait analysis, and the sacral base plane. The different methods for 3D analysis of the acetabulum were divided in four groups: global orientation, triplanar measurements, segmentation, and surface coverage of the femoral head. Two methods were found appropriate for reorientation osteotomies: the global orientation by a vector method and the triplanar method. The global orientation method relies on the creation of a vector from the acetabular rim, from the acetabular surface or from successive planes. Normalization of the global acetabular vector would correct acetabular dysplasia by a single alignment maneuver on an ideal vector. The triplanar method, based on angle measurements at the center of the femoral head, would involve correction of anomalies by considering axial, frontal, and sagittal planes. Although not directly fit for reorientation, the two others would help to candidate patients and verify both planning and postoperative result.

2.
Heliyon ; 10(11): e32325, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947435

ABSTRACT

Linearity and intermodulation distortion are very crucial parameters for RFICs design. Therefore, in this work, a detailed comparative analysis on linearity and intermodulation distortion of single metal (SMG) and double metal (DMG) double gate junction less transistor (JLT) is done using TCAD silvaco suite. Furthermore, the effects of temperature fluctuation, gate length variation, and gate material engineering on the linearity performance of both devices are also studied. A few significant figures of merit, including Voltage Intercept Point 2 (VIP2), Voltage Intercept Point 3 (VIP3), Third Order Intercept Power (IIP3), 1 dB Compression Point (P1dB), Third Order Intermodulation Distortion (IMD3), and the transconductance derivative parameters First Order Transconductance (gm1), Second Order Transconductance (gm2), and Third Order Transconductance (gm3) are used to assess the device linearity and intermodulation distortion of SMG and DMG JLT's. The findings show that higher VIP2, VIP3, IIP3, 1-dB compression point and lower gm3, IMD3 values are obtained for the SMG JLT device when compared to its counterpart DMG JLT. SMG JLT, which assures strong linearity and low distortion.

3.
J Adv Prosthodont ; 16(3): 139-150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957291

ABSTRACT

PURPOSE: The purpose of this diagnostic study was to assess the accuracy and time efficiency of a digital method to draw the denture foundation extension outline on preliminary casts compared with the conventional technique. MATERIALS AND METHODS: A total of 28 preliminary edentulous casts with no anatomical landmarks were digitized using a laboratory scanner. The outlining of the entire basal seat of the denture was performed on preliminary casts and digitized. Casts with no extension outline were digitized and outlines were drawn using software (DWOS, Straumann). The accuracy of the extension outlined between both techniques was evaluated in the software (GOM Inspect; GOM GmbH) by file superimposition. Specificity and sensitivity tests were applied to measure accuracy. The paired t-test (95% CI) was used to compare the mean total area and the working time. RESULTS: The accuracy ranged from 0.57 to 0.92. The buccal and labial frenulum showed a lower value in the maxilla (0.57); while the area between the retromolar pad and buccal frenulum (0.64) showed a lower score in the mandible. The maxillary denture foundation and the working time for both arches were significantly longer for the digital method (P < .001). CONCLUSION: The denture foundation extension outline exhibited a sufficiently excellent accuracy for the digital method, except for the maxillary anterior region. However, the digital method required a longer working time.

4.
BMC Oral Health ; 24(1): 760, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965507

ABSTRACT

BACKGROUND: Preservation of the remaining structures while maintaining an esthetic appearance is a major objective in removable partial prosthodontics. So, the aim of the current study was to compare the stresses induced on the supporting structures by two digitally produced esthetic core materials; Zirconia and Polyetheretherketone when used as an extracoronal attachment in distal extension removable partial dentures using strain gauge analysis. METHODS: A mandibular Kennedy class II stone cast with the necessary abutments' preparations was scanned. The mandibular left canine and first premolar teeth were virtually removed. An acrylic mandibular left canine and first premolar teeth were prepared with heavy chamfer finish line and scanned. Virtual superimposition of the acrylic teeth in their corresponding positions was done. Two strain gauge slots were designed: distal to the terminal abutment and in the residual ridge. Two models and two sets of scanned teeth were digitally printed. The printed teeth were then placed in their corresponding sockets in each model and scanned. The attachment design was selected from the software library and milled out of Zirconia in the model ZR and Polyetheretherketone in the model PE. Five removable partial dentures were constructed for each model. The strain gauges were installed in their grooves. A Universal testing machine was used for unilateral load application of 100 N (N). For each removable partial denture, five measurements were made. The data followed normal distribution and were statistically analyzed by using unpaired t test. P value < 0.05 was considered to be statistically significant. RESULTS: During unilateral loading unpaired t test showed statistically significant difference (p = 0.0001) in the microstrain values recorded distal to the abutment between the models ZR (-1001.6 µÎµ ± 24.56) and PE (-682.6 µÎµ ± 22.18). However, non statistically significant difference (p = 0.3122) was observed in the residual ridge between them; ZR (16.2 µÎµ ± 4.53) and PE (15 µÎµ ± 3.74). CONCLUSIONS: In removable partial dentures, Polyetheretherketone extracoronal attachment induces less stress on the supporting abutments compared to the zirconia one with no difference in the stresses induced by them on the residual ridge.


Subject(s)
Benzophenones , Denture Design , Denture, Partial, Removable , Ketones , Polymers , Zirconium , Ketones/chemistry , Humans , Zirconium/chemistry , Polyethylene Glycols , Dental Stress Analysis , Dental Materials/chemistry , Computer-Aided Design , Dental Abutments , Stress, Mechanical , Esthetics, Dental , Materials Testing
5.
Article in English | MEDLINE | ID: mdl-39038189

ABSTRACT

INTRODUCTION: The primary challenge associated with implant overdentures lies in the occurrence of denture fractures around the attachments. Hence, it is recommended to enhance flexural strength through reinforcement frameworks. This study aimed to assess and compare the prosthetic maintenance of mandibular implant overdentures reinforced with Co-Cr and PEKK frameworks. METHODS: Twenty-four participants with completely edentulous ridges were selected, and two implants were placed at the mandibular canine areas. After osseointegration period, ball attachments were installed. Participants were randomly assigned into two groups: Group I received a mandibular implant overdenture reinforced with a Co-Cr framework, while Group II received a mandibular implant overdenture reinforced with a PEKK framework. Prosthetic maintenance evaluations were conducted in both groups twelve months post-denture insertion. Categorical data were analyzed, and results were presented as frequency and percentage values. RESULTS: Group II exhibited a significantly higher percentage of cases with screw looseness, denture relining, and tooth separation compared to Group I. Although Group II cases showed a non-significant increase in the percentage of insert wear and retention loss. CONCLUSION: Within the limitations of this study, the findings suggest that Co-Cr, in contrast to PEKK frameworks, offers a more reliable reinforcement of the implant-retained overdentures.

6.
J Med Life ; 17(3): 375-380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044932

ABSTRACT

Soft and hard tissue defects resulting from resective surgeries for carcinomas located in the maxillary arches can cause functional, esthetic, and psychological damage. A removable obturator prosthesis offers several advantages, restoring oral functions and improving patients' quality of life. Technological advancements, such as the use of intraoral scanning and computer-aided design (CAD) and manufacturing, reduce laboratory working time, eliminate the risk of impression material aspiration, and address challenges related to whole tissue undercut impression. Here, we report the case of a partially edentulous female patient with a velo-palatal defect for whom a rigid maxillary obturator prosthesis was fabricated. Digital impressions were taken and the standard tessellation language files of the scans were sent to the laboratory. Using dental CAD software, the maxillary metallic framework was designed and manufactured using selective laser melting technology. The obturators and artificial teeth were conventionally processed, with acrylic resin used for the rigid obturators. The resulting obturator prosthesis made it possible to close the oro-nasal communication and to improve swallowing, speaking, and chewing.


Subject(s)
Computer-Aided Design , Maxilla , Palatal Obturators , Humans , Female , Maxilla/surgery , Middle Aged , Dental Prosthesis Design
7.
Dent Mater ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39079765

ABSTRACT

OBJECTIVES: The primary aim of this in vitro study was to compare the load-bearing capacity of lithium disilicate occlusal veneers, fabricated via different manufacturing processes. Secondary objectives included assessing internal accuracy and production time-efficiency. METHODS: Four fabrication methods for ultra-thin lithium disilicate occlusal veneers on extracted human molars with simulated erosive defects were compared (n = 20/group): CAM: milled lithium disilicate (IPS e.max CAD); HPR: heat-pressed lithium disilicate (IPS e.max Press) out of a milled PMMA template (Ddpmma CAST); 3DP: 3D-printed lithium disilicate (experimental lithium disilicate); PTE: heat-pressed lithium disilicate (IPS e.max Press) out of a 3D-printed template (SilaPrint cast). Internal accuracy was measured prior to thermo-mechanical aging, followed by static loading to measure the load-bearing capacity (Fmax). Fabrication time (time-efficiency) was also recorded. Statistical analysis was performed using the Kruskal-Wallis (KW) test. RESULTS: No statistically significant differences were found in median load-bearing capacities (Fmax) between the groups (KW p = 0.5902): CAM 1821 N, HPR 1896 N, 3DP 2003 N, PTE 1687 N. Significant differences were found in internal accuracy between the groups that employed printing processes (3DP, PTE) and all other groups in margins (p < 0.001), cusps (p < 0.0018), and fossae (p < 0.0346). The time-efficiency measurements indicated an increase in fabrication time, starting from CAM 67.2 ± 5.8 min, followed by HPR 200.8 ± 33.0 min, PTE 289.2 ± 38.7 min, and peaking with the highest duration observed for 3DP 701.6 ± 8.1 min. SIGNIFICANCE: The fabrication method of ultra-thin lithium disilicate occlusal veneers does not significantly impact their load-bearing capacity, but affects the clinical fit and adaptation of the veneers.

8.
J Prosthodont ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985139

ABSTRACT

This technique presents a workflow that designs the custom surgical guide to cover a trephine bur using simple slicer software and three-dimensional (3D) printing to perform the semilunar technique. This method in autogenous bone grafting surgery harvests a thin layer of cortical bone in the donor site with a trephine bur. Its biologically favorable, round shape can be used as a shell to reconstruct the ridge with a 3D contour acceptable for future implant placement. A 78-year-old female patient required vertical and horizontal bone grafting for future implant placement due to the infection caused by the vertically fractured root of a premolar. The patient's cone beam computed tomography (CBCT) file was translated into a standard tessellation language (STL) file, and recipient and donor site models were created. Simulated surgery was done using the software first to detect any possible complications during surgery. The trephine bur planned for use in surgery was measured in necessary dimensions, and the values were added to create a guide for surgery in slicer software. Then, it was 3D-printed with a stereolithography (SLA) printer. After testing the fit of the guide, it was further tested on a fused filament fabrication (FFF) printed donor site model to check if the desired shape and size of the plate were acquired after harvest. Then, the plates were used for model surgery on the recipient site model. After no issues from the previous steps, the final patient surgery was approved and completed with success. This technique utilizes the SLA printing method to create the custom surgical guide for a trephine bur without using commercially available products. Moreover, it could be tested on FFF 3D-printed anatomical models to ensure its validity. With this innovative technique, clinicians can efficiently perform a semilunar technique, facilitating the surgery and improving patient care.

9.
Heliyon ; 10(12): e32726, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975154

ABSTRACT

COVID-19 (Coronavirus), an acute respiratory disorder, is caused by SARS-CoV-2 (coronavirus severe acute respiratory syndrome). The high prevalence of COVID-19 infection has drawn attention to a frequent illness symptom: olfactory and gustatory dysfunction. The primary purpose of this manuscript is to create a Computer-Assisted Diagnostic (CAD) system to determine whether a COVID-19 patient has normal, mild, or severe anosmia. To achieve this goal, we used fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (FLAIR-MRI) and Diffusion Tensor Imaging (DTI) to extract the appearance, morphological, and diffusivity markers from the olfactory nerve. The proposed system begins with the identification of the olfactory nerve, which is performed by a skilled expert or radiologist. It then proceeds to carry out the subsequent primary steps: (i) extract appearance markers (i.e., 1 s t and 2 n d order markers), morphology/shape markers (i.e., spherical harmonics), and diffusivity markers (i.e., Fractional Anisotropy (FA) & Mean Diffusivity (MD)), (ii) apply markers fusion based on the integrated markers, and (iii) determine the decision and corresponding performance metrics based on the most-promising classifier. The current study is unusual in that it ensemble bags the learned and fine-tuned ML classifiers and diagnoses olfactory bulb (OB) anosmia using majority voting. In the 5-fold approach, it achieved an accuracy of 94.1%, a balanced accuracy (BAC) of 92.18%, precision of 91.6%, recall of 90.61%, specificity of 93.75%, F1 score of 89.82%, and Intersection over Union (IoU) of 82.62%. In the 10-fold approach, stacking continued to demonstrate impressive results with an accuracy of 94.43%, BAC of 93.0%, precision of 92.03%, recall of 91.39%, specificity of 94.61%, F1 score of 91.23%, and IoU of 84.56%. In the leave-one-subject-out (LOSO) approach, the model continues to exhibit notable outcomes, achieving an accuracy of 91.6%, BAC of 90.27%, precision of 88.55%, recall of 87.96%, specificity of 92.59%, F1 score of 87.94%, and IoU of 78.69%. These results indicate that stacking and majority voting are crucial components of the CAD system, contributing significantly to the overall performance improvements. The proposed technology can help doctors assess which patients need more intensive clinical care.

11.
J Prosthodont ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010644

ABSTRACT

PURPOSE: This study aimed to examine the satisfaction of dental professionals, including dental students, dentists, and dental technicians, with computer-aided design (CAD) software performance using deep learning (DL) and explainable artificial intelligence (XAI)-based behavioral analysis concepts. MATERIALS AND METHODS: This study involved 436 dental professionals with diverse CAD experiences to assess their satisfaction with various dental CAD software programs. Through exploratory factor analysis, latent factors affecting user satisfaction were extracted from the observed variables. A multilayer perceptron artificial neural network (MLP-ANN) model was developed along with permutation feature importance analysis (PFIA) and the Shapley additive explanation (Shapley) method to gain XAI-based insights into individual factors' significance and contributions. RESULTS: The MLP-ANN model outperformed a standard logistic linear regression model, demonstrating high accuracy (95%), precision (84%), and recall rates (84%) in capturing complex psychological problems related to human attitudes. PFIA revealed that design adjustability was the most important factor impacting dental CAD software users' satisfaction. XAI analysis highlighted the positive impacts of features supporting the finish line and crown design, while the number of design steps and installation time had negative impacts. Notably, finish-line design-related features and the number of design steps emerged as the most significant factors. CONCLUSIONS: This study sheds light on the factors influencing dental professionals' decisions in using and selecting CAD software. This approach can serve as a proof-of-concept for applying DL-XAI-based behavioral analysis in dentistry and medicine, facilitating informed software selection and development.

12.
BMC Oral Health ; 24(1): 770, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982396

ABSTRACT

BACKGROUND: High precision intra-oral scans, coupled with advanced software, enable virtual bracket removal (VBR) from digital models. VBR allows the delivery of retainers and clear aligners promptly following debonding, thus reducing the patients' appointments and minimizing the likelihood of tooth movement. The objective of this study was to compare the enamel surface before bonding and after VBR using three different Computer-aided design (CAD) software and to compare their accuracy. METHODS: Maxillary scans of 20 participants starting orthodontic treatment were selected for inclusion in the study, who exhibited mild to moderate crowding and required bonding of brackets on the labial surface of permanent maxillary teeth (from the maxillary left first molar to the maxillary right first molar). Two intra-oral scans were conducted on the same day, before bonding and immediately after bonding using CEREC Omnicam (Sirona Dental Systems, Bensheim, Germany). The virtual removal of the brackets from the post-bonding models was performed using OrthoAnalyzer (3Shape, Copenhagen, Denmark), Meshmixer (Autodesk, San Rafael, Calif, USA), and EasyRx (LLC, Atlanta, GA, USA) software. The models that underwent VBR were superimposed on the pre-bonding models by Medit Link App (Medit, Seoul, South Korea) using surface-based registration. The changes in the enamel surface following VBR using the three software packages were quantified using the Medit Link App. RESULTS: There was a significant difference among the 3Shape, Meshmixer, and EasyRx software in tooth surface change following VBR. Specifically, EasyRx exhibited lower levels of accuracy compared to the other two VBR software programs (p<.001, p<.001). A significant difference in enamel surface change was observed between tooth segments across all software groups, in both incisors and molars, with VBR of the molars exhibiting the lowest level of accuracy (3Shape p=.002, Meshmixer p<.001, EasyRx p<.001). Regarding the direction of tooth surface changes following VBR, it was observed that all three groups exhibited a significant increase in the percentage of inadequate bracket removal across all teeth segments. CONCLUSIONS: 3Shape and Meshmixer manual VBR software were found to be more accurate than EasyRx automated software, however, the differences were minimal and clinically insignificant.


Subject(s)
Orthodontic Brackets , Software , Humans , Computer-Aided Design , Dental Debonding/methods , Female , Adolescent , Male , Models, Dental , Dental Enamel , Malocclusion/therapy , Dental Bonding/methods
13.
J Prosthodont ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992883

ABSTRACT

PURPOSE: This systematic review and meta-analysis aimed to evaluate the depth distortion and angular deviation of fully-guided tooth-supported static surgical guides (FTSG) in partially edentulous arches compared to partially guided surgical guides or freehand. MATERIAL AND METHODS: This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered in the Open Science Framework (OSF). The formulated population, intervention, comparison, and outcome (PICO) question was: "In partially edentulous arches, what are the depth distortion and angular deviation of FTSG compared to partially guided surgical guides or freehand?" The search strategy involved four main electronic databases, and an additional manual search was completed in November 2023 by following an established search strategy. Initial inclusion was based on titles and abstracts, followed by a detailed review of selected studies, and clinical studies that evaluated the angular deviations or depth distortion in FTSG in partial arches, compared to partially guided surgical guides or freehand, were included. In FTSG, two surgical approaches were compared: open flap and flapless techniques, and two digital methods were assessed for surgical guide design with fiducial markers or dental surfaces. A qualitative analysis for clinical studies was used to assess the risk of bias. The certainty of the evidence was assessed according to the grading of recommendations, assessment, development, and evaluations (GRADE) system. In addition, a single-arm meta-analysis of proportion was performed to evaluate the angular deviation of freehand and FTSG. RESULTS: Ten studies, published between 2018 and 2023, met the eligibility criteria. Among them, 10 studies reported angular deviations ranging from -0.32° to 4.96° for FTSG. Regarding FTSG surgical approaches, seven studies examined the open flap technique for FTSG, reporting mean angular deviations ranging from 2.03° to 4.23°, and four studies evaluated flapless FTSG, reporting angular deviations ranging from -0.32° to 3.38°. Six studies assessed the freehand surgical approach, reporting angular deviations ranging from 1.40° to 7.36°. The mean depth distortion ranged between 0.19 mm to 2.05 mm for open flap FTSG, and between 0.15 mm to 0.45 mm for flapless FTSG. For partially guided surgical guides, two studies reported angular deviations ranging from 0.59° to 3.44°. Seven studies were eligible for meta-analysis, focusing on the FTSG in open flap technique, with high heterogeneity (I2 (95%CI) = 92.3% (88.7%-96.4%)). In contrast, heterogeneity was low in studies comparing freehand versus FTSG in open flap techniques (I2 (95%CI) = 21.3% (0.0%-67.8%)), favoring the FTSG surgical approach. CONCLUSION: In partially edentulous arches, FTSG systems exhibited less angular deviation than freehand and partially guided surgical guides. Flapless surgical approaches were associated with reduced angular deviation and depth distortion, suggesting a potential preference for the FTSG method in these procedures.

14.
Article in English | MEDLINE | ID: mdl-39018170

ABSTRACT

OBJECTIVES: This study aimed to evaluate the impact of 3D-printed mannequins on the training of predoctoral students. METHODS: Two 3D-printed training models were developed: a traditional model that simulates a sound adult patient and a customized model with pathological and physiological changes (impacted third molar and edentulous region). Students accomplished their pre-clinical training divided into a control group (CG, n = 23), which had access to the traditional model, and a test group (TG, n = 20), which had access to both models. Afterward, they performed a full mouth series on patients and filled out a perception questionnaire. Radiographs were evaluated for technical parameters. Descriptive statistics and the Mann-Whitney test were used to compare the groups. RESULTS: Students provided positive feedback regarding the use of 3D printing. The TG reported a more realistic training experience than the CG (p = 0.037). Both groups demonstrated good clinical performance (CG = 7.41; TG = 7.52), and no significant differences were observed between them. CONCLUSIONS: 3D printing is an option for producing simulators for pre-clinical training in Oral Radiology, reducing student stress and increasing confidence during clinical care.

15.
Front Dent ; 21: 20, 2024.
Article in English | MEDLINE | ID: mdl-39011351

ABSTRACT

Objectives: This study aimed to do a comprehensive systematic review on the comparison of digital and conventional workflows regarding prosthetic outcomes, accuracy of implant impressions, framework passivity and fit, and clinical fabrication of multi-unit implant-supported fixed restorations. Materials and Methods: The EMBASE, PubMed, Scopus, and Cochrane Library databases were searched for relevant articles published up until April 2020. Results: No in-vivo article was found to compare full digital and conventional workflows regarding the accuracy of implant impressions, passivity and fit of frameworks, and prosthetic outcomes. There was no study to investigate full digital and conventional workflows for clinical fabrication of multi-unit implant-supported fixed restorations. Conclusion: This empty review highlights the need for further research to compare full digital and conventional workflows for implant-supported restorations.

16.
Front Surg ; 11: 1345261, 2024.
Article in English | MEDLINE | ID: mdl-39040681

ABSTRACT

Background: Hip replacement surgeries are increasing in demand, requiring rigorous improvements to a mature surgical protocol. Postoperative patient dissatisfaction mainly stems from postoperative complications resulting from the inappropriate selection of prostheses to meet the needs of each patient. This results in prosthesis loosening, hospital-related fractures, and postoperative complex pain, which can all be attributed to inappropriate sizing. In this study, we aimed to further explore the intraoperative and postoperative benefits of incorporating computer-aided design (CAD) in preoperative planning for total hip arthroplasty (THA). Methods: A total of 62 patients requiring total hip replacement surgery from January 2021 to December 2021 were collected and randomly divided into a preoperative computer-aided simulated group and a conventional x-ray interpretation group. The accuracy of implant size selection (femoral and acetabular implant) between the preoperative planning and surgical procedure of the two groups was compared. Patient parameters, perioperative Harris hip scores, operative time (skin-to-skin time), surgical blood loss, and postoperative hospital stay were recorded, and the differences between the two groups were statistically compared using a single sample t-test. Results: All patients in the study were successfully operated on and achieved good postoperative functional recovery. With CAD, the selection of the most suitable-sized prosthesis was significantly more accurate compared to the control group (accuracy of the acetabular component between the CAD/control: 80.6%/61.3%, and accuracy of the femoral component: 83.9%/67.7%). Intraoperative blood loss (177.4/231.0 ml, P = 0.002), operation time (84.2 ± 19.8 min/100.3 ± 25.9 min, P = 0.008), duration of hospital stay (6.5 ± 3/9.1 ± 3.9 days, P = 0.003), and postoperative Harris hip score (81.9 ± 6.5/74.7 ± 11.1, P = 0.003) were compared to the control group and showed statistical significance. Conclusion: Incorporating CAD into the preoperative planning of total hip arthroplasty can effectively guide the selection of the most suitable-sized prosthesis, reduce intraoperative blood loss, and promote short-term functional recovery after THA.

17.
J Vet Dent ; : 8987564241265420, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042890

ABSTRACT

Giant pandas have a high incidence of tooth wear, loss, and fracture since their diet is specifically bamboo. Dental implantation is a common treatment for tooth loss in humans while rarely reported in wild animals. To explore the applicability of dental implantation in giant pandas, this study measured mandible parameters of the giant panda, from an adult skeletal specimen. The mandible bone block model was developed using computer-aided design 3D mechanical drawing software. Implants of different radius and thread types of the third premolar tooth (PM3) were assembled and imported into an analysis software system for finite element analysis. As a result, the reverse buttress implant with a radius of 7.5 mm and 8.3 mm, and a length of 15 mm was found to be the most suitable implant for use in the giant panda PM3. This study provides a reference for appropriate clinical giant panda dental implantation, although, the feasibility of giant panda dental implantation needs to be studied further.

18.
Article in English | MEDLINE | ID: mdl-39033056

ABSTRACT

The repair of hemimandibulectomy defects involving the temporomandibular joint (TMJ) is challenging. This study compared the functional outcomes and reconstruction accuracy using a deep circumflex iliac artery (DCIA) flap with and without a virtually planned stock TMJ prosthesis (TMJP) after hemimandibulectomy. Ten patients were assessed: five with a TMJP (TMJP group) and five without (control group). A three-dimensional comparison revealed a mean deviation of 0.11 ± 0.04 mm between the planned and actual DCIA flap with TMJP. The planned and actual TMJP positions differed by 0.56 ± 0.57 mm in height, 0.33 ± 0.24 mm ventrally/dorsally, and 1.18 ± 0.42 mm medially/laterally. Mouth opening, laterotrusion, and midline deviation were significantly greater in the control group than in the TMJP group (P = 0.024, P = 0.008, P = 0.024). The deviation in ventral to dorsal translation for the DCIA flap was slightly higher than reported values in the literature, while height deviation was comparable. Lower deviations in the literature were due to the DCIA flap being used where both TMJs were intact. The in-house virtually planned DCIA flap with stock TMJP yielded results comparable to more expensive patient-specific prostheses.

19.
Methods Mol Biol ; 2844: 3-31, 2024.
Article in English | MEDLINE | ID: mdl-39068329

ABSTRACT

We discuss the formalism of chemical reaction networks (CRNs) as a computer-aided design interface for using formal methods in engineering living technologies. We set out by reviewing formal methods within a broader view of synthetic biology. Based on published results, we illustrate, step by step, how mathematical and computational techniques on CRNs can be used to study the structural and dynamic properties of the designed systems. As a case study, we use an E. coli two-component system that relays the external inorganic phosphate concentration signal to genetic components. We show how CRN models can scan and explore phenotypic regimes of synthetic promoters with varying detection thresholds, thereby providing a means for fine-tuning the promoter strength to match the specification.


Subject(s)
Escherichia coli , Promoter Regions, Genetic , Synthetic Biology , Synthetic Biology/methods , Escherichia coli/genetics , Models, Chemical , Phosphates/chemistry , Phosphates/metabolism
20.
Article in English | MEDLINE | ID: mdl-38890025

ABSTRACT

the aim of this paper, is to propose a new reference line: the Frontozygomatic-Infraorbital Line (FZ-IOL). This reference line can guide the surgical team planning mandibular angle harmonization, based on the patient's skeletal proportion. The Frontozygomatic-Infraorbital Line has been adopted for symmetrization surgery, masculinization surgery, and in unsatisfactory results of previous orthognathic surgery. From March 2021 to December 2022, 3 patients were treated for severe facial asymmetry affecting mainly the lower third of the face. All cases were planned with the reference FZ-IOL. Patients were treated in the same center, at the Orthognathic Surgery Department of the Instituto Portugues da Face, Lisbon, Portugal. The Frontozygomatic-Infraorbital Line is designed virtually using software to reconstruct a 3D image from a digital imaging and communications in medicine (DICOM) file obtained from a cone beam computer tomography (CBCT). , connecting the two orbital rims. Then, a vertical line, the frontozygomatic line perpendicular to the IOL and passing through the outmost lateral portion of the frontozygomatic suture is drawn. The proposed line demonstrated how establishing appropriate reference lines is crucial for the success of the surgery. The selection of reference lines should be based on the patient's anatomy, the symmetrization process's complexity, and the surgery's desired outcome. The Frontozygomatic-Infraorbital Line represents an adequate reference line for managing mandibular angle lateral projection, improving lower third of the face symmetrization.

SELECTION OF CITATIONS
SEARCH DETAIL