Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121948, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36252301

ABSTRACT

Crystal polymorphs of fluorinated ionic liquids (fILs) were examined at low-temperature (LT) by Raman spectroscopy. The fILs were 1-alkyl-3-methylimidazolium perfluorobutanesulfonate, [Cnmim][PFBS] (n = 4, 6, and 8). The cations and anion possess conformational degrees of freedom. Various LT phases were derived from the conformational polymorphs of the cations and the anion. Conformational flexibility depended on alkyl chain length. The crystal polymorphs in the fILs were sensitive to molecular conformations and flexibility.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Imidazoles/chemistry , Molecular Conformation , Cations/chemistry , Anions
2.
Acta Crystallogr C Struct Chem ; 77(Pt 1): 20-28, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33397821

ABSTRACT

The dipharmacophore compound 3-cyclopropyl-5-(3-methyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,2,4-oxadiazole, C12H11N5O, was studied on the assumption of its potential biological activity. Two polymorphic forms differ in both their molecular and crystal structures. The monoclinic polymorphic form was crystallized from more volatile solvents and contains a conformer with a higher relative energy. The basic molecule forms an abundance of interactions with relatively close energies. The orthorhombic polymorph was crystallized very slowly from isoamyl alcohol and contains a conformer with a much lower energy. The basic molecule forms two strong interactions and a large number of weak interactions. Stacking interactions of the `head-to-head' type in the monoclinic structure and of the `head-to-tail' type in the orthorhombic structure proved to be the strongest and form stacked columns in the two polymorphs. The main structural motif of the monoclinic structure is a double column where two stacked columns interact through weak C-H...N hydrogen bonds and dispersive interactions. In the orthorhombic structure, a single stacked column is the main structural motif. Periodic calculations confirmed that the orthorhombic structure obtained by slow evaporation has a lower lattice energy (0.97 kcal mol-1) compared to the monoclinic structure.

3.
Acta Crystallogr C Struct Chem ; 75(Pt 4): 451-461, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30957791

ABSTRACT

The concomitant occurrence of dimorphs of diphenyl (3,4-difluorophenyl)phosphoramidate, C18H14F2NO3P, was observed via a solution-mediated crystallization process with variation in the symmetry-free molecules (Z'). The existence of two forms, i.e. Form I (block, Z' = 1) and Form II (needle, Z' = 2), was characterized by single-crystal X-ray diffraction, differential scanning calorimetry and powder X-ray diffraction. Furthermore, a quantitative analysis of the energetics of the different intermolecular interactions was carried out via the energy decomposition method (PIXEL), which corroborates with inputs from the energy framework and looks at the topology of the various intermolecular interactions present in both forms. The unequivocally distinguished contribution of strong N-H...O hydrogen bonds along with other interactions, such as C-H...O, C-H...F, π-π and C-H...π, mapped on the Hirshfeld surface is depicted by two-dimensional fingerprint plots. Apart from the major electrostatic contribution from N-H...O hydrogen bonds, the crystal structures are stabilized by contributions from the dispersion energy. The closely related melting points and opposite trends in the calculated lattice energies are interesting to investigate with respect to the thermodynamic stability of the observed dimorphs. The significant variation in the torsion angles in both forms helps in classifying them in the category of conformational polymorphs.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 414-422, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32830663

ABSTRACT

In this paper, the conformational polymorphism of a chlorinated diketopyrrolopyrrole (DPP) dye having flexible substituents in a non-hydrogen-bonding system is reported. The propyl-substituted DPP derivative (PR3C) has three polymorphic forms, each showing a different colour (red, orange and yellow). All polymorphs could be obtained concomitantly under various crystallization conditions. The results of the crystal structure analysis indicate that PR3C adopts different conformations in each polymorph. The packing effect caused by the difference in the arrangement of neighbouring molecules was found to play an important role in the occurrence of the observed polymorphism. The thermodynamic stability relationship between the three polymorphs was identified by thermal analysis and indicates that the yellow polymorph is the thermally stable form. The results indicate that the yellow form and orange form are enantiotropically related, and the other polymorph is monotropically related to the others.

5.
Acta Crystallogr C Struct Chem ; 74(Pt 4): 437-441, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29620027

ABSTRACT

We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, C34H30Cl2N2O2. Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z' = 1/2), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular C-H...π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.

SELECTION OF CITATIONS
SEARCH DETAIL