Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
IUCrJ ; 11(Pt 4): 538-555, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842120

ABSTRACT

Crystallography is a quintessential method for determining the atomic structure of crystals. The most common implementation of crystallography uses single crystals that must be of sufficient size, typically tens of micrometres or larger, depending on the complexity of the crystal structure. The emergence of serial data-collection methods in crystallography, particularly for time-resolved experiments, opens up opportunities to develop new routes to structure determination for nanocrystals and ensembles of crystals. Fluctuation X-ray scattering is a correlation-based approach for single-particle imaging from ensembles of identical particles, but has yet to be applied to crystal structure determination. Here, an iterative algorithm is presented that recovers crystal structure-factor intensities from fluctuation X-ray scattering correlations. The capabilities of this algorithm are demonstrated by recovering the structure of three small-molecule crystals and a protein crystal from simulated fluctuation X-ray scattering correlations. This method could facilitate the recovery of structure-factor intensities from crystals in serial crystallography experiments and relax sample requirements for crystallography experiments.

2.
Entropy (Basel) ; 26(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785674

ABSTRACT

Analysis of non-Markovian systems and memory-induced phenomena poses an everlasting challenge in the realm of physics. As a paradigmatic example, we consider a classical Brownian particle of mass M subjected to an external force and exposed to correlated thermal fluctuations. We show that the recently developed approach to this system, in which its non-Markovian dynamics given by the Generalized Langevin Equation is approximated by its memoryless counterpart but with the effective particle mass M∗

3.
IUCrJ ; 10(Pt 6): 708-719, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37782462

ABSTRACT

Many coherent imaging applications that utilize ultrafast X-ray free-electron laser (XFEL) radiation pulses are highly sensitive to fluctuations in the shot-to-shot statistical properties of the source. Understanding and modelling these fluctuations are key to successful experiment planning and necessary to maximize the potential of XFEL facilities. Current models of XFEL radiation and their shot-to-shot statistics are based on theoretical descriptions of the source and are limited in their ability to capture the shot-to-shot intensity fluctuations observed experimentally. The lack of accurate temporal statistics in simulations that utilize these models is a significant barrier to optimizing and interpreting data from XFEL coherent diffraction experiments. Presented here is a phenomenological model of XFEL radiation that is capable of capturing the shot-to-shot statistics observed experimentally using a simple time-dependent approximation of the pulse wavefront. The model is applied to reproduce non-stationary shot-to-shot intensity fluctuations observed at the European XFEL, whilst accurately representing the single-shot properties predicted by FEL theory. Compared with previous models, this approach provides a simple, robust and computationally inexpensive method of generating statistical representations of XFEL radiation.

4.
IUCrJ ; 9(Pt 2): 231-242, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35371507

ABSTRACT

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.

5.
IUCrJ ; 9(Pt 2): 167-168, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35371511

ABSTRACT

As the relationship of texture and microtexture to fluctuation X-ray scattering (FXS) has been clarified in detail, key progress is expected in the exploitation of FXS-based structural investigation of matter exhibiting complex order.

6.
IUCrJ ; 8(Pt 5): 775-783, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34584738

ABSTRACT

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

7.
Acta Crystallogr A Found Adv ; 77(Pt 5): 480-496, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34473101

ABSTRACT

Incoherent diffractive imaging (IDI) promises structural analysis with atomic resolution based on intensity interferometry of pulsed X-ray fluorescence emission. However, its experimental realization is still pending and a comprehensive theory of contrast formation has not been established to date. Explicit expressions are derived for the equal-pulse two-point intensity correlations, as the principal measured quantity of IDI, with full control of the prefactors, based on a simple model of stochastic fluorescence emission. The model considers the photon detection statistics, the finite temporal coherence of the individual emissions, as well as the geometry of the scattering volume. The implications are interpreted in view of the most relevant quantities, including the fluorescence lifetime, the excitation pulse, as well as the extent of the scattering volume and pixel size. Importantly, the spatiotemporal overlap between any two emissions in the sample can be identified as a crucial factor limiting the contrast and its dependency on the sample size can be derived. The paper gives rigorous estimates for the optimum sample size, the maximum photon yield and the expected signal-to-noise ratio under optimal conditions. Based on these estimates, the feasibility of IDI experiments for plausible experimental parameters is discussed. It is shown in particular that the mean number of photons per detector pixel which can be achieved with X-ray fluorescence is severely limited and as a consequence imposes restrictive constraints on possible applications.

8.
IUCrJ ; 6(Pt 4): 635-648, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316808

ABSTRACT

Higher-order statistical analysis of X-ray scattering from dilute solutions of polydisperse goethite nanorods was performed and revealed structural information which is inaccessible by conventional small-angle scattering. For instance, a pronounced temperature dependence of the correlated scattering from suspension was observed. The higher-order scattering terms deviate from those expected for a perfectly isotropic distribution of particle orientations, demonstrating that the method can reveal faint orientational order in apparently disordered systems. The observation of correlated scattering from polydisperse particle solutions is also encouraging for future free-electron laser experiments aimed at extracting high-resolution structural information from systems with low particle heterogeneity.

9.
IUCrJ ; 4(Pt 1): 24-36, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28250939

ABSTRACT

Liquids, glasses and other amorphous matter lack long-range order, which makes them notoriously difficult to study. Local atomic order is partially revealed by measuring the distribution of pairwise atomic distances, but this measurement is insensitive to orientational order and unable to provide a complete picture of diverse amorphous phenomena, such as supercooling and the glass transition. Fluctuation scattering with electrons and X-rays is able provide this orientational sensitivity, but it is difficult to obtain clear structural interpretations of fluctuation data. Here we show that the interpretation of fluctuation diffraction data can be simplified by converting it into a real-space angular distribution function. We calculate this function from simulated diffraction of amorphous nickel, generated with a classical molecular dynamics simulation of the quenching of a high temperature liquid state. We compare the results of the amorphous case to the initial liquid state and to the ideal f.c.c. lattice structure of nickel. We show that the extracted angular distributions are rich in information about orientational order and bond angles. The diffraction fluctuations are potentially measurable with electron sources and also with the brightest X-ray sources, like X-ray free-electron lasers.

SELECTION OF CITATIONS
SEARCH DETAIL