Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(26): e2301021, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36944139

ABSTRACT

Carbonates (CO3 2- ) have always been known as impurities to degrade the superconductivity in cuprate high-Tc superconductors. Herein, the atomic arrangement of carbonates is directly visualized in (Cu,C)Ba2 Ca3 Cu4 O11+δ via integrated differential phase contrast (iDPC) combined with state-of-the-art scanning transmission electron microscopy. The carbon atoms replace Cu atoms in the charge-reservoir layers, contributing to the formation of carbonates through strong orbital hybridization with the surrounding oxygen atoms. Using first-principles calculations, the spatial configuration of the carbonate groups is confirmed and their influence on the local crystal lattice and electronic states is further investigated. The carbonates not only accommodate distortions by improving the flatness of the outer CuO2 layers but also reduce the density of states at the Fermi level. These two factors play competitive roles to affect the superconductivity. This study provides direct evidence of the presence of CO3 2- groups and gains an insight into the underlying mechanism of superconductivity in oxycarbonate superconductors.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558221

ABSTRACT

We study the critical fluctuations near the resistive transition of very thin films of high-temperature cuprate superconductors composed of a number N of only a few unit cells of superconducting bilayers. For that, we solve the fluctuation spectrum of a Gaussian-Ginzburg-Landau model for few-bilayers superconductors considering two alternating Josephson interlayer interaction strengths, and we obtain the corresponding paraconductivity above the transition. Then, we extend these calculations to temperatures below the transition through expressions for the Ginzburg number and Kosterlitz-Thouless-like critical region. When compared with previously available data in YBa2Cu3O7-δ few-bilayers systems, with N = 1 to 4, our results seem to provide a plausible scenario for their critical regime.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36234468

ABSTRACT

Cuprate superconductors have attracted extensive attention due to their broad promising application prospects. Among the factors affecting superconductivity, the effect of strain cannot be ignored, which can significantly enhance or degrade superconductivity. In this review, we discuss and summarize the methods of applying strain to cuprate superconductors, strain measurement techniques, and the influence of strain on superconductivity. Among them, we pay special attention to the study of strain in high-temperature superconducting (HTS) films and coating. We expect this review can guide further research in the field of cuprate superconductors.

4.
J Phys Condens Matter ; 34(41)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35878602

ABSTRACT

We report the results of in-plane magnetotransport study of slightly underdoped cuprate La1.85Sr0.15CuO4(LSCO15) with Ni impurity. Increasing Ni contentycauses a sharp drop in longitudinal magnetoresistance (LMR) in LSCO15 to broaden and move towards higher temperatures. TemperatureTmLMR(y)of this local maximum in LMR coincides with temperatureTdev(y), below which ideal resistivity from the parallel-resistor model deviates from itsT2-dependence. A direct comparison with the hole doping evolution of pseudogap (PG) in La2-xSrxCuO4(LSCO), possible through the mobile-carrier concentration extracted from the thermopower measurements, allows to equate both characteristic temperaturesTmLMR≅Tdevwith PG opening temperatureT∗. The rate of PG closing by magnetic field parallel to the CuO2plane, in measurements up to 9 T, is consistent with spin-paramagnetic effect in this configuration and yields PG closing fieldBpcclose to the second critical fieldBc2predicted for superconducting gap with the help of Werthamer-Helfand-Hohenberg theory. The field anisotropy ofBpcsuggests that orbital degrees of freedom also play a role in PG formation.

5.
Natl Sci Rev ; 9(4): nwab225, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35530436

ABSTRACT

The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study the electron-doped copper oxide compound Sr1- x Nd x CuO2, which has only bare cations separating the CuO2 planes and thus the simplest infinite-layer structure of all cuprate superconductors. Tunneling conductance spectra of the major CuO2 planes in the superconducting state revealed direct evidence for a nodeless pairing gap, regardless of variation of its magnitude with the local doping of trivalent neodymium. Furthermore, three distinct bosonic modes are observed as multiple peak-dip-hump features outside the superconducting gaps and their respective energies depend little on the spatially varying gaps. As well as the bosonic modes, with energies identical to those of the external, bending and stretching phonons of copper oxides, our findings reveal the origin of the bosonic modes in lattice vibrations rather than spin excitations.

6.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34593641

ABSTRACT

Experiments have shown that the families of cuprate superconductors that have the largest transition temperature at optimal doping also have the largest oxygen hole content at that doping [D. Rybicki et al., Nat. Commun. 7, 1-6 (2016)]. They have also shown that a large charge-transfer gap [W. Ruan et al., Sci. Bull. (Beijing) 61, 1826-1832 (2016)], a quantity accessible in the normal state, is detrimental to superconductivity. We solve the three-band Hubbard model with cellular dynamical mean-field theory and show that both of these observations follow from the model. Cuprates play a special role among doped charge-transfer insulators of transition metal oxides because copper has the largest covalent bonding with oxygen. Experiments [L. Wang et al., arXiv [Preprint] (2020). https://arxiv.org/abs/2011.05029 (Accessed 10 November 2020)] also suggest that superexchange is at the origin of superconductivity in cuprates. Our results reveal the consistency of these experiments with the above two experimental findings. Indeed, we show that covalency and a charge-transfer gap lead to an effective short-range superexchange interaction between copper spins that ultimately explains pairing and superconductivity in the three-band Hubbard model of cuprates.

7.
ACS Appl Mater Interfaces ; 13(7): 9101-9112, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33576610

ABSTRACT

Combinatorial and high-throughput experimentation (HTE) is achieving more relevance in material design, representing a turning point in the process of accelerated discovery, development, and optimization of materials based on data-driven approaches. The versatility of drop-on-demand inkjet printing (IJP) allows performing combinatorial studies through fabrication of compositionally graded materials with high spatial precision, here by mixing superconducting REBCO precursor solutions with different rare earth (RE) elements. The homogeneity of combinatorial Y1-xGdxBa2Cu3O7 samples was designed with computational methods and confirmed by energy-dispersive X-ray spectroscopy (EDX) and high-resolution X-ray diffraction (XRD). We reveal the advantages of this strategy in the optimization of the epitaxial growth of high-temperature REBCO superconducting films using the novel transient liquid-assisted growth method (TLAG). Advanced characterization methods, such as in situ synchrotron growth experiments, are tailored to suit the combinatorial approach and demonstrated to be essential for HTE schemes. The experimental strategy presented is key for the attainment of large datasets for the implementation of machine learning backed material design frameworks.

8.
J Phys Condens Matter ; 33(14)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33395674

ABSTRACT

The superfluid density or superconducting (SC) carrier concentrationnscof cuprates has been the subject of intense investigations but there is not any single theory capable to explain all the available data. Here we show that the behavior ofnscin under and overdoped cuprates are a consequence of an SC interaction based on charge fluctuations in the incommensurate charge-density-waves (CDW) domains. We have shown that this interaction scales with the CDW amplitude or the pseudogap (PG) energy, yielding local SC amplitudes and Josephson currents. The average Josephson energyEJis proportional to the phase stiffness or superfluid densityρsc∝nsc. We find thatnsc(p) increases almost linearly with dopingpin the underdoped region and in the charge abundant overdoped only a few fractions of the holes condense leading to two kinds of carriers, a recently confirmed feature. The calculations and theρscdata uncover how the PG-CDW-SC intertwined orders operate to yield cuprates properties.

9.
Small ; 17(9): e1904788, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32363776

ABSTRACT

In recent years, atomically thin superconductors, including atomically thin elemental superconductors, single layer FeSe films, and few-layer cuprate superconductors, have been studied extensively. This hot research field is mainly driven by the discovery of significant superconductivity enhancement and high-temperature interface superconductivity in single-layer FeSe films epitaxially grown on SrTiO3 substrates in 2012. This study has attracted tremendous research interest and generated more studies focusing on further enhancing superconductivity and finding the origin of the superconductivity. A few years later, research on atomically thin superconductors has extended to cuprate superconductors, unveiling many intriguing properties that have neither been proposed or observed previously. These new discoveries challenge the current theory regarding the superconducting mechanism of unconventional superconductors and indicate new directions on how to achieve high-transition-temperature superconductors. Herein, this exciting recent progress is briefly discussed, with a focus on the recent progress in identifying new atomically thin superconductors.

10.
Nano Lett ; 21(1): 308-316, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33320013

ABSTRACT

Hyperbolic Cooper-pair polaritons (HCP) in cuprate superconductors are of fundamental interest due to their potential for providing insights into the nature of unconventional superconductivity. Here, we critically assess an experimental approach using near-field imaging to probe HCP in Bi2Sr2CaCu2O8+x (Bi-2212) in the presence of graphene surface plasmon polaritons (SPP). Our simulations show that inherently weak HCP features in the near-field can be strongly enhanced when coupled to graphene SPP in layered graphene/hexagonal boron nitride (hBN)/Bi-2212 heterostructures. This enhancement arises from our multilayered structures effectively acting as plasmonic cavities capable of altering collective modes of a layered superconductor by modifying its electromagnetic environment. The degree of enhancement can be selectively controlled by tuning the insulating spacer thickness with atomic precision. Finally, we verify the expected renormalization of room-temperature graphene SPP using near-field infrared imaging. Our modeling, augmented with data, attests to the validity of our approach for probing HCP modes in cuprate superconductors.

11.
Proc Natl Acad Sci U S A ; 117(31): 18341-18346, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32699148

ABSTRACT

"Strange metals" with resistivity depending linearly on temperature T down to low T have been a long-standing puzzle in condensed matter physics. Here, we consider a lattice model of itinerant spin-[Formula: see text] fermions interacting via onsite Hubbard interaction and random infinite-ranged spin-spin interaction. We show that the quantum critical point associated with the melting of the spin-glass phase by charge fluctuations displays non-Fermi liquid behavior, with local spin dynamics identical to that of the Sachdev-Ye-Kitaev family of models. This extends the quantum spin liquid dynamics previously established in the large-M limit of [Formula: see text] symmetric models to models with physical [Formula: see text] spin-[Formula: see text] electrons. Remarkably, the quantum critical regime also features a Planckian linear-T resistivity associated with a T-linear scattering rate and a frequency dependence of the electronic self-energy consistent with the marginal Fermi liquid phenomenology.

12.
Sci Adv ; 2(3): e1501657, 2016 03.
Article in English | MEDLINE | ID: mdl-27034989

ABSTRACT

Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.


Subject(s)
Electrons , Superconductivity , Temperature , Copper/chemistry , Magnetic Fields , Pressure , Thermometry , Transition Temperature
13.
Proc Natl Acad Sci U S A ; 112(31): 9568-72, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26199413

ABSTRACT

The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

14.
Physica C Supercond ; 479(17): 88-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23482832

ABSTRACT

We report on electrical transport measurements at high current densities on optimally doped YBa2Cu3O7-δ thin films grown on vicinal SrTiO3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm-2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects.

SELECTION OF CITATIONS
SEARCH DETAIL