Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 967
Filter
1.
Biomaterials ; 313: 122805, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39250865

ABSTRACT

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Subject(s)
Copper , Nanostructures , Neoplasms , Copper/chemistry , Humans , Animals , Nanostructures/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Cell Death/drug effects
2.
Biomaterials ; 313: 122762, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39178559

ABSTRACT

Osteomyelitis is an osseous infectious disease that primarily affects children and the elderly with high morbidity and recurrence. The conventional treatments of osteomyelitis contain long-term and high-dose systemic antibiotics with debridements, which are not effective and lead to antibiotic resistance with serious side/adverse effects in many cases. Hence, developing novel antibiotic-free interventions against osteomyelitis (especially antibiotic-resistant bacterial infection) is urgent and anticipated. Here, a bone mesenchymal stem cell membrane-constructed nanocell (CFE@CM) was fabricated against osteomyelitis with the characteristics of acid-responsiveness, hydrogen peroxide self-supplying, enhanced chemodynamic therapeutic efficacy, bone marrow targeting and cuproptosis induction. Notably, mRNA sequencing was applied to unveil the underlying biological mechanisms and found that the biological processes related to copper ion binding, oxidative phosphorylation, peptide biosynthesis and metabolism, etc., were disturbed by CFE@CM in bacteria. This work provided an innovative antibiotic-free strategy against osteomyelitis through copper-enhanced Fenton reaction and distinct cuproptosis, promising to complement the current insufficient therapeutic regimen in clinic.


Subject(s)
Copper , Osteomyelitis , Osteomyelitis/drug therapy , Animals , Copper/chemistry , Copper/pharmacology , Hydrogen-Ion Concentration , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mice , Hydrogen Peroxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Humans , Staphylococcus aureus/drug effects
3.
Biomaterials ; 313: 122763, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39180917

ABSTRACT

Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs. By taking advantage of the photothermal effects of CuET@PHF, tumor hypoxia is overcome via tumor mechanics normalization, thereby leading to enhanced cuproptosis and immunogenic cell death in 4T1 CSCs. As a result, the integration of CuET@PHF and mild photothermal therapy not only significantly suppresses tumor growth but also effectively inhibits tumor recurrence and distant metastasis by eliminating CSCs and augmenting antitumor immune responses. This study presents the first evidence of cuproptosis in CSCs, reveals that disrupting hypoxia augments cuproptosis cancer therapy, and establishes a paradigm for potent cancer therapy by simultaneously eliminating CSCs and boosting antitumor immunity.


Subject(s)
Copper , Nanomedicine , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Animals , Female , Nanomedicine/methods , Copper/chemistry , Copper/pharmacology , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Mice, Inbred BALB C , Photothermal Therapy/methods , Humans , Polymers/chemistry , Indoles/pharmacology
4.
Biomaterials ; 312: 122723, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121732

ABSTRACT

The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.


Subject(s)
Copper , Hydrogels , Immune Checkpoint Inhibitors , Immunotherapy , Lymphocyte Activation , Pentacyclic Triterpenes , Reactive Oxygen Species , T-Lymphocytes , Tumor Microenvironment , Pentacyclic Triterpenes/pharmacology , Hydrogels/chemistry , Animals , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Lymphocyte Activation/drug effects , Copper/chemistry , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Female , Triterpenes/pharmacology , Triterpenes/chemistry
5.
Heliyon ; 10(17): e36559, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39295987

ABSTRACT

Objective: Ischemic stroke (IS) is a significant health concern with high disability and fatality rates despite available treatments. Immune cells and cuproptosis are associated with the onset and progression of IS. Investigating the interaction between cuproptosis-related genes (CURGs) and immune cells in IS can provide a theoretical basis for IS treatment. Methods: We obtained IS datasets from the Gene Expression Omnibus (GEO) and employed machine learning to identify CURGs. The diagnostic efficiency of the CURGs was evaluated using receiver operating characteristic (ROC) curves. KEGG and gene set enrichment analysis (GSEA) were also conducted to identify biologically relevant pathways associated with CURGs in IS patients. Single-cell analysis was used to confirm the expression of 19 CURGs, and pathway activity calculations were performed using the AUCell package. Additionally, a risk prediction model for IS patients was developed, and core modules and hub genes related to IS were identified using weighted gene coexpression network analysis (WGCNA). We classified IS patients using a method of consensus clustering. Results: We established a precise diagnostic model for IS. Enrichment analysis revealed major pathways, including oxidative phosphorylation, the NF-kappa B signaling pathway, the apoptosis pathway, and the Wnt signaling pathway. At the single-cell level, compared to those in non-IS samples, 19 CURGs were primarily overexpressed in the immune cells of IS samples and exhibited high activity in natural killer cell-mediated cytotoxicity, steroid hormone biosynthesis, and oxidative phosphorylation. Two clusters were obtained through consensus clustering. Notably, immune cell types including B cells, plasma cells, and resting NK cells, varied between the two clusters. Furthermore, the red module and hub genes associated with IS were uncovered. The expression patterns of CURGs varied over time. Conclusion: This study developed a precise diagnostic model for IS by identifying CURGs and evaluating their interaction with immune cells. Enrichment analyses revealed key pathways involved in IS, and single-cell analysis confirmed CURG overexpression in immune cells. A risk prediction model and core modules associated with IS were also identified.

6.
Heliyon ; 10(18): e37612, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315155

ABSTRACT

Background and aims: Alcohol-related liver disease (ALD) is a worldwide burden. Cuproptosis has been shown to play a key role in the development of several diseases. However, the role and mechanisms of cuproptosis in ALD remain unclear. Methods: The RNA-sequencing data of ALD liver samples were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatical analyses were performed using the R data package. We then identified key genes through multiple machine learning methods. Immunoinfiltration analyses were used to identify different immune cells in ALD patients and controls. The expression levels of key genes were further verified. Results: We identified three key cuproptosis-related genes (CRGs) (DPYD, SLC31A1, and DBT) through an in-depth analysis of two GEO datasets, including 28 ALD samples and eight control samples. The area under the curve (AUC) value of these three genes combined in determining ALD was 1.0. In the external datasets, the three key genes had AUC values as high as 1.0 and 0.917, respectively. Nomogram, decision curve, and calibration curve analyses also confirmed these genes' ability to predict the diagnosis. These three key genes were found to be involved in multiple pathways associated with ALD progression. We confirmed the mRNA expression of these three key genes in mouse ALD liver samples. Regarding immune cell infiltration, the numbers of B cells, CD8 (+) T cells, NK cells, T-helper cells, and Th1 cells were significantly lower in ALD patient samples than in control liver samples. Single sample gene set enrichment analysis (ssGSEA) was then used to estimate the immune microenvironment of different CRG clusters and CRG-related gene clusters. In addition, we calculated CRG scores through principal component analysis (PCA) and selected Sankey plots to represent the correlation between CRG clusters, gene clusters, and CRG scores. Finally, the three key genes were confirmed in mouse ALD liver samples and liver cells treated with ethanol. Conclusions: We first established a prognostic model for ALD based on 3 CRGs and robust prediction efficacy was confirmed. Our investigation contributes to a comprehensive understanding of the role of cuproptosis in ALD, presenting promising avenues for the exploration of therapeutic strategies.

7.
Sci Total Environ ; 954: 176353, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304169

ABSTRACT

Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.

8.
Biomed Pharmacother ; 179: 117415, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39265236

ABSTRACT

Resistance to cisplatin presents a major obstacle in managing advanced-stage cervical cancer. Cuproptosis, a newly identified form of cell death induced by copper ions, has potential in overcoming chemoresistance. But the application of cuproptosis in cervical cancer resistant to cisplatin has not yet been reported. In this study, treatment with Elsm-Cu in cervical cancer cells induced cuproptosis, affecting cell proliferation and apoptosis was found. Moreover, cuproptosis in cervical cancer cells was significantly induced by baicalein. The combination of baicalein and cisplatin exhibited a synergistic effect on cervical cancer cells by promoting apoptosis and inhibiting cell viability via the induction of cuproptosis. Animal experiments demonstrated that this combination significantly suppressed tumor growth. Upon treating cells with SC79 (Akt agonist), a significant inhibition of the expression of cuproptosis-related proteins SDHB and FDX1 were observed, indicating that baicalein induced cuproptosis through the Akt pathway. These results indicated that baicalein, mediated through the Akt pathway to induce cuproptosis, had the potential to improve the sensitivity of cervical cancer cells to cisplatin.


Subject(s)
Apoptosis , Cisplatin , Drug Synergism , Flavanones , Proto-Oncogene Proteins c-akt , Signal Transduction , Uterine Cervical Neoplasms , Cisplatin/pharmacology , Flavanones/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Animals , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Copper/pharmacology , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Mice , Xenograft Model Antitumor Assays , Cell Survival/drug effects , HeLa Cells
9.
Int J Biol Sci ; 20(12): 4872-4887, 2024.
Article in English | MEDLINE | ID: mdl-39309446

ABSTRACT

Breast cancer (BC) persists as a highly prevalent malignancy in females, characterized by diverse molecular signatures and necessitating personalized therapeutic approaches. The equilibrium of copper within the organism is meticulously maintained through regulated absorption, distribution, and elimination, underpinning not only cellular equilibrium but also various essential biological functions. The process of cuproptosis is initiated by copper's interaction with lipoylases within the tricarboxylic acid (TCA) cycle, which triggers the conglomeration of lipoylated proteins and diminishes the integrity of Fe-S clusters, culminating in cell demise through proteotoxic stress. In BC, aberrations in cuproptosis are prominent and represent a crucial molecular incident that contributes to the disease progression. It influences BC cell metabolism and affects critical traits such as proliferation, invasiveness, and resistance to chemotherapy. Therapeutic strategies that target cuproptosis have shown promising antitumor efficacy. Moreover, a plethora of cuproptosis-centric genes, including cuproptosis-related genes (CRGs), CRG-associated non-coding RNAs (ncRNAs), and cuproptosis-associated regulators, have been identified, offering potential for the development of risk assessment models or diagnostic signatures. In this review, we provide a comprehensive exposition of the fundamental principles of cuproptosis, its influence on the malignant phenotypes of BC, the prognostic implications of cuproptosis-based markers, and the substantial prospects of exploiting cuproptosis for BC therapy, thereby laying a theoretical foundation for targeted interventions in this domain.


Subject(s)
Breast Neoplasms , Copper , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Copper/metabolism , Disease Progression
10.
Acta Pharm Sin B ; 14(9): 4059-4072, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309486

ABSTRACT

Copper-based nanomaterials demonstrate promising potential in cancer therapy. Cu+ efficiently triggers a Fenton-like reaction and further consumes the high level of glutathione, initiating chemical dynamic therapy (CDT) and ferroptosis. Cuproptosis, a newly identified cell death modality that represents a great prospect in cancer therapy, is activated. However, active homeostatic systems rigorously keep copper levels within cells exceptionally low, which hinders the application of cooper nanomaterials-based therapy. Herein, a novel strategy of CRISPR-Cas9 RNP nanocarrier to deliver cuprous ions and suppress the expression of copper transporter protein ATP7A for maintaining a high level of copper in cytoplasmic fluid is developed. The Cu2O and organosilica shell would degrade under the high level of glutathione and weak acidic environment, further releasing RNP and Cu+. The liberated Cu+ triggered a Fenton-like reaction for CDT and partially transformed to Cu2+, consuming intracellular GSH and initiating cuproptosis and ferroptosis efficiently. Meanwhile, the release of RNP effectively reduced the expression of copper transporter ATP7A, subsequently increasing the accumulation of cooper and enhancing the efficacy of CDT, cuproptosis, and ferroptosis. Such tumor microenvironment responsive multimodal nanoplatform opens an ingenious avenue for colorectal cancer therapy based on gene editing enhanced synergistic cuproptosis/CDT/ferroptosis.

11.
Int J Mol Sci ; 25(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273650

ABSTRACT

Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.


Subject(s)
Autophagy , Breast Neoplasms , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Female , Autophagy/drug effects , Signal Transduction/drug effects , Cell Death , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Apoptosis/drug effects , Ferroptosis/drug effects , Animals , Necroptosis/drug effects
12.
BMC Immunol ; 25(1): 59, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251909

ABSTRACT

OBJECTIVE AND METHODS: To ascertain the connection between cuproptosis-related genes (CRGs) and the prognosis of hepatocellular carcinoma (HCC) via single-cell RNA sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data, relevant data were downloaded from the GEO and TCGA databases. The differentially expressed CRGs (DE-CRGs) were filtered by the overlaps in differentially expressed genes (DEGs) between HCC patients and normal controls (NCs) in the scRNA-seq database, DE-CRGs between high- and low-CRG-activity cells, and DEGs between HCC patients and NCs in the TCGA database. RESULTS: Thirty-three DE-CRGs in HCC were identified. A prognostic model (PM) was created employing six survival-related genes (SRGs) (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) via univariate Cox regression analysis and LASSO. The predictive ability of the model was validated via a nomogram and receiver operating characteristic curves. Research has employed tumor immune dysfunction and exclusion as a means to examine the influence of PM on immunological heterogeneity. Macrophage M0 levels were significantly different between the high-risk group (HRG) and the low-risk group (LRG), and a greater macrophage level was linked to a more unfavorable prognosis. The drug sensitivity data indicated a substantial difference in the half-maximal drug-suppressive concentrations of idarubicin and rapamycin between the HRG and the LRG. The model was verified by employing public datasets and our cohort at both the protein and mRNA levels. CONCLUSION: A PM using 6 SRGs (NDRG2, CYB5A, SOX4, MYC, TM4SF1, and IFI27) was developed via bioinformatics research. This model might provide a fresh perspective for assessing and managing HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Computational Biology , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Single-Cell Analysis , Humans , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , Prognosis , Computational Biology/methods , Biomarkers, Tumor/genetics , Sequence Analysis, RNA , Gene Expression Profiling , Nomograms
13.
J Orthop Surg Res ; 19(1): 550, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252111

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.


Subject(s)
Cell Death , Chondrocytes , Disease Progression , Osteoarthritis , Chondrocytes/pathology , Humans , Osteoarthritis/pathology , Osteoarthritis/therapy , Cell Death/physiology , Apoptosis/physiology , Cartilage, Articular/pathology , Autophagy/physiology , Animals , Pyroptosis/physiology , Ferroptosis/physiology
14.
J Biochem Mol Toxicol ; 38(10): e23848, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39264832

ABSTRACT

Glioma represents a primary malignant tumor occurring in the central nervous system. Glutamate decarboxylase (GAD1) plays a significant role in tumor development; however, its function of GAD1 and underlying mechanisms in glioma progression remain unclear. Differentially expressed genes (DEGs) obtained from the GSE12657 and GSE15209 datasets that intersected with cuproptosis-related genes and pivot genes were identified using comprehensive bioinformatics methods. The elesclomol (ES) treatment was used to induce cuproptosis in U251 cells, which was validated by detecting intracellular copper levels and cuproptosis marker expression. Lentivirus-mediated gene overexpression was performed to explore the effects of GAD1 using functional assays in vitro and in a mouse xenograft model. The RAS agonist ML098 was used to verify the effect of GAD1 on the RAS/MAPK pathway in glioma cells. A total of 87 cuproptosis-related DEGs and seven hub genes were obtained, with five genes upregulated and two were downregulated in gliomas. Overexpression of GAD1 inhibited proliferation, invasion, and migration, promoted apoptosis of glioma cells, and suppressed tumorigenesis in vivo. In addition, GAD1 overexpression enhanced the sensitivity of glioma cells to cuproptosis. Additionally, ML098 treatment attenuated the inhibitory effect of GAD1 overexpression on the malignant phenotype of ES-treated cells. GAD1 plays an anti-oncogenic role in glioma by regulating apoptosis via inhibition of the RAS/MAPK pathway.


Subject(s)
Glioma , Glutamate Decarboxylase , MAP Kinase Signaling System , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Humans , Animals , Mice , Cell Line, Tumor , Glutamate Decarboxylase/metabolism , Glutamate Decarboxylase/genetics , ras Proteins/metabolism , ras Proteins/genetics , Disease Progression , Mice, Nude , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic
15.
J Trace Elem Med Biol ; 86: 127517, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39270538

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy. The aim of this research was to develop a ferroptosis and cuproptosis related novel prognostic signature associated with AML. METHODS: The ferroptosis and cuproptosis related genes correlated with the prognosis of AML were identified by univariate Cox analysis. The consistent cluster analysis was performed for 150 AML patients in TCGA dataset. The key module genes associated with GSVA score of ferroptosis and cuproptosis were identified by WGCNA. univariate Cox and LASSO regression analysis were adopted to build a ferroptosis and cuproptosis AML prognostic signature. Finally, the expression of five prognostic genes in clinical tissue samples were verified by RT-qPCR. RESULTS: A grand total of 27 FCRGs associated with AML prognosis were identified.Then, two AML sub-types with significantly different survival were obtained. We found 3 significantly differential expressed immune cells (naive CD4 cells, regulatory T cells and resting mast cells) between two risk sub-groups. Meanwhile, 'IL6 JAK STAT3 signaling' and 'P53 pathway' were enriched in low-risk group. A ferroptosis and cuproptosis related prognostic signature was build based on 8 prognostic genes. RT-qPCR results indicated that there was no significant difference in the expression of OLFML2A and CD109 between AML and normal samples. However, compared to the control group, LGALS1, SOCS1, and RHOC showed significantly lower expression in the AML group. CONCLUSION: The prognostic signature comprised of OLFML2A, LGALS1, ABCB11, SOCS1, RHOC, CD109, RD3L and PTPN13 based on ferroptosis and cuproptosis was established, which provided theoretical basis for the research of AML.

16.
Semin Cancer Biol ; 106-107: 106-122, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299410

ABSTRACT

With the prolonged survival of individuals with cancer, the emergence of cardiovascular diseases (CVD) induced by cancer treatment has become a significant concern, ranking as the second leading cause of death among cancer survivors. This review explores three distinct types of programmed cell death (PCD): ferroptosis, cuproptosis, and PANoptosis, focusing on their roles in chemotherapy-induced cardiotoxicity. While ferroptosis and cuproptosis are triggered by excess iron and copper (Cu), PANoptosis is an inflammatory PCD with features of pyroptosis, apoptosis, and necroptosis. Recent studies reveal intricate connections among these PCD types, emphasizing the interplay between cuproptosis and ferroptosis. Notably, the role of intracellular Cu in promoting ferroptosis through GPX4 is highlighted. Additionally, ROS-induced PANoptosis is influenced by ferroptosis and cuproptosis, suggesting a complex interrelationship. This review provides insights into the molecular mechanisms of these PCD modalities and their distinct contributions to chemotherapy-induced cardiotoxicity. Furthermore, we discuss the potential application of cardioprotective drugs in managing these PCD types. This comprehensive analysis aims to advance the understanding, diagnosis, and therapeutic strategies for cardiotoxicity associated with cancer treatment.

17.
Polymers (Basel) ; 16(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274051

ABSTRACT

Lenvatinib resistance (LenR) presents a significant challenge in hepatocellular carcinoma (HCC) treatment, leading to high cancer-related mortality rates globally. Unlike traditional chemotherapy resistance mechanisms, LenR in HCC is primarily driven by increased cancer cell stemness. Disulfiram, (DSF), functioning as a Cu ionophore, can coordinate with Cu2+ to overcome LenR in HCC by inhibiting cancer cell stemness and cuproptosis. However, DSF faces challenges due to its poor water solubility, while copper ions present issues related to systemic toxicity during widespread use. To address this, DSF and CuO nanoparticles (NPs) were co-encapsulated to form an oil-in-water Pickering emulsion (DSF@CuO), effectively elevating DSF and copper ion concentrations within the tumor microenvironment (TME). DSF@CuO was then combined with sodium alginate (SA) to form a DSF@CuO-SA solution, which gelatinizes in situ with Ca2+ in the TME to form a DSF@CuO Gel, enhancing Pickering emulsion stability and sustaining DSF and copper ion release. A DSF@CuO Gel exhibits enhanced stability and therapeutic efficacy compared to conventional administration methods. It effectively induces mitochondrial dysfunction and cuproptosis in LenR HCC cells by downregulating DLAT, LIAS, and CDKN2A, while upregulating FDX1. Furthermore, it suppresses cancer stemness pathways through activation of the JNK/p38 MAPK pathway and inhibition of the NF-κB and NOTCH signaling pathways. These findings suggest that DSF@CuO Gels are a promising therapeutic strategy for treating LenR HCC. In vivo and in vitro LenR HCC models demonstrated significant therapeutic efficacy. In conclusion, this novel approach underscores DSF@CuO Gel's potential to overcome LenR in HCC, offering a novel approach to address this clinical challenge.

18.
Chem Biol Interact ; : 111239, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306268

ABSTRACT

The microsatellite stable (MSS) colon cancer (CC) has long been considered resistant to immunotherapy. Cuproptosis, as a novel form of cell death, may interact with tumor immunity. This project focused on the impact of cuproptosis on the cytotoxicity of CD8+T in MSS CC, aiming to provide effective clues for improving the treatment strategy of MSS CC. The study developed an MSS CC cuproptosis model using 50 nM elesclomol and 1 µM CuCl2. Cuproptotic SW480 cells were directly co-cultured with CD8+ T cells. Cuproptosis levels were assessed via intracellular copper ion detection, western blot, and confocal laser scanning microscopy. CCK-8, Hochest/PI staining, CFSE cell proliferation assay, LDH cytotoxicity detection, and ELISA were used to evaluate CD8+ T cell immune activity and cytotoxicity. Transcriptome sequencing and bioinformatics analysis identified regulated signals in cuproptotic SW480 cells. A rescue experiment utilized a WNT pathway activator (BML-284). PD-L1 expression in cells/membranes was analyzed using qRT-PCR, western blot, and flow cytometry. NSG mice were immunoreconstituted, and the effects of cuproptosis on immune infiltration and cancer progression in MSS CC mice were assessed using ELISA and immunohistochemistry (IHC). Treatment with 50 nM elesclomol and 1 µM CuCl2 significantly increased cuproptosis in SW480 cells. Co-culture with CD8+ T cells enhanced their cytotoxicity. Sequencing revealed cuproptosis-mediated modulation of immune and inflammatory pathways, including WNT signaling. Rescue experiments showed downregulation of WNT signaling in cuproptotic SW480 cells. Indirectly, CD8+ T cell immune function was enhanced by reducing PD-L1 expression. In mice, cuproptosis resulted in increased infiltration of CD8+ T cells in tumor tissue, leading to delayed cancer progression compared to the control group. Cuproptosis in MSS CC cells enhances the cytotoxicity of CD8+ T cells, which may be achieved through downregulation of the WNT signaling pathway and decreased expression of PD-L1. In the future, drugs that can induce cuproptosis may be a promising approach to improve MSS CC immunotherapy.

19.
Clin Exp Med ; 24(1): 226, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325172

ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.


Subject(s)
Biomarkers, Tumor , Copper , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Copper/metabolism , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic
20.
J Cancer ; 15(17): 5786-5809, 2024.
Article in English | MEDLINE | ID: mdl-39308676

ABSTRACT

Metal regulatory transcription factor 1 (MTF1) has been reported to induce the expression of metallothionein and other genes involved in metal homeostasis. However, the role of MTF1 in pan-cancer and tumor immunity remains unclear. In this study, we conducted a series of bioinformatics analyses to investigate the clinical significance and potential functions of MTF1 across various types of cancer. By employing bioinformatics algorithms and immunofluorescence assays, we analyzed the associations between MTF1 and immune infiltration in the tumor microenvironment as well as the expression levels of immune-related molecules. Our findings revealed dysregulation of MTF1 in pan-cancer along with its correlation with certain clinicopathological features, suggesting its diagnostic and prognostic value for multiple cancer types. Furthermore, our immune-associated analyses and assays demonstrated strong correlations between MTF1 expression and plasmacytoid dendritic cells (pDC), central memory T cells (Tcm), as well as several immune biomarkers. Subsequent in vitro assays indicated that MTF1 reduced the sensitivity of cancer cells to cuproptosis. Overall, our study highlights that MTF1 may serve as a promising biomarker for prognosis assessment and a potential therapeutic target for more effective treatment strategies against various cancers.

SELECTION OF CITATIONS
SEARCH DETAIL