Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
1.
Biol Reprod ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223948

ABSTRACT

Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.

2.
J Med Primatol ; 53(5): e12734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39245882

ABSTRACT

A captive 17-year-old male cynomolgus monkey (Macaca fascicularis) developed diffuse large B-cell lymphoma (DLBCL). This was the first report of DLBCL presenting with a mandible mass and violation of the paranasal sinus in a cynomolgus monkey. The neoplasm showed marked microscopical malignant aspects. Immunohistochemical staining showed strong positive expression of CD20. These features may contribute to the diagnosis and therapeutics of DLBCL in NHPs.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Macaca fascicularis , Monkey Diseases , Animals , Male , Lymphoma, Large B-Cell, Diffuse/veterinary , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Monkey Diseases/pathology , Monkey Diseases/diagnosis
3.
Article in English | MEDLINE | ID: mdl-39126396

ABSTRACT

The pharmacokinetics and tissue distribution of renadirsen sodium, a dystrophin exon-skipping phosphorothioate-modified antisense oligonucleotide with 2'-O,4'-C-ethylene-bridged nucleic acid (ENA), after subcutaneous or intravenous administration to cynomolgus monkeys were investigated. The plasma concentration of renadirsen after subcutaneous administration at 1, 3, and 10 mg/kg increased with the dose. The absolute bioavailability at 3 mg/kg after subcutaneous administration was calculated as 88.6%, and the time to reach maximum plasma concentration of renadirsen was within 4 h, indicating the efficient and rapid absorption following subcutaneous administration. The exposure of muscle tissues to renadirsen was found to increase with repeated dosing at 6 mg/kg, and higher exposure was observed in the diaphragm and heart than in the quadriceps femoris and anterior tibialis muscles. Renadirsen achieved more exon 45-skipped dystrophin mRNA in the diaphragm and heart than in the quadriceps femoris and anterior tibialis muscles. Renadirsen also showed a cumulative skipping effect in a repeated-dose study. The findings on exon 45-skipped dystrophin mRNA in these muscle tissues were consistent with the concentration of renadirsen in these tissues. Because it is not feasible to directly evaluate drug concentration and exon skipping in the heart and diaphragm in humans, the pharmacokinetics and pharmacodynamics of renadirsen in these tissues in monkeys are crucial for the design and interpretation of clinical settings.

4.
In Vivo ; 38(5): 2245-2253, 2024.
Article in English | MEDLINE | ID: mdl-39187365

ABSTRACT

BACKGROUND/AIM: Ischemic stroke is a major health concern globally and developing reliable animal models is crucial for understanding its pathophysiology. This study evaluated the relationship between cerebral angiographic findings and neurologic dysfunction in an acute non-human primate thromboembolic stroke model and determined the minimum clot length for suitable middle cerebral artery (MCA) occlusion. MATERIALS AND METHODS: A thromboembolic stroke model was developed by injecting autologous blood clots (length: 1, 2, 3, 4, 5, and 10 cm, n=1 to 3, 14 monkeys in total) into the internal carotid artery of male cynomolgus monkeys. Digital subtraction angiography (DSA) and neurologic deficit observation were performed pre-; immediately after (DSA only); and 1, 3, 6, and 24 h after embolization, and the relationship between clot length, neurologic deficits, and cerebral infarction was assessed. RESULTS: DSA confirmed MCA occlusion in all animals after the clot injection. Recanalization of the MCA was observed within 6 h post-embolization in animals with shorter clots (≤3 cm). Neurologic deficits were evident in animals with MCA occlusion and correlated with the clot length. Larger clots (≥5 cm) led to permanent MCA occlusion, significant neurologic deficits, and extensive cerebral infarction. Histopathological examination revealed ischemic damage in brain regions corresponding to the infarcted areas. CONCLUSION: Clot length is critical in determining the extent of neurologic dysfunction and cerebral infarction, with larger clots producing more severe outcomes. Furthermore, the minimum clot length required for model creation is 5 cm.


Subject(s)
Cerebral Angiography , Disease Models, Animal , Infarction, Middle Cerebral Artery , Animals , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/physiopathology , Male , Cerebral Angiography/methods , Angiography, Digital Subtraction/methods , Macaca fascicularis , Behavior, Animal
5.
Vet Med Sci ; 10(4): e1521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952271

ABSTRACT

BACKGROUND: Cynomolgus monkeys (Macaca fascicularis) are essential in biomedical research, including reproductive studies. However, the application of human estimated foetal weight (EFW) formulas using ultrasonography (USG) in these non-human primates is not well established. OBJECTIVES: This study aims to evaluate the applicability of human EFW formulas for estimating foetal weight in cynomolgus monkeys at approximately 130 days of gestation. METHODS: Our study involved nine pregnant cynomolgus monkeys. We measured foetal parameters, including biparietal diameter, head circumference, abdominal circumference and femur length using USG. The EFW was calculated using 11 human EFW formulas. The actual birthweight (ABW) was recorded following Cesarean section, the day after the EFW calculation. For comparing EFW and ABW, we employed statistical methods such as mean absolute percentage error (APE) and Bland-Altman analysis. RESULTS: The ABW ranged between 200.36 and 291.33 g. Among the 11 formulas, the Combs formula showed the lowest APE (4.3%) and highest correlation with ABW (p < 0.001). Notably, EFW and ABW differences for the Combs formula were ≤5% in 66.7% and ≤10% in 100% of cases. The Bland-Altman analysis supported these results, showing that all cases fell within the limits of agreement. CONCLUSIONS: The Combs formula is applicable for estimating the weight of cynomolgus monkey fetuses with USG at approximately 130 days of gestation. Our observations suggest that the Combs formula can be applied in the prenatal care and biomedical research of this species.


Subject(s)
Birth Weight , Fetal Weight , Macaca fascicularis , Ultrasonography, Prenatal , Animals , Macaca fascicularis/embryology , Macaca fascicularis/physiology , Female , Fetal Weight/physiology , Pregnancy , Ultrasonography, Prenatal/veterinary , Humans
6.
Alzheimers Dement ; 20(8): 5492-5510, 2024 08.
Article in English | MEDLINE | ID: mdl-38973166

ABSTRACT

INTRODUCTION: More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS: We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS: We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aß42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION: PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS: A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aß secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aß42 and phosphorylated tau).


Subject(s)
Alzheimer Disease , Disease Models, Animal , Macaca fascicularis , Mutation , Presenilin-1 , Animals , Alzheimer Disease/genetics , Alzheimer Disease/blood , Presenilin-1/genetics , Mutation/genetics , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/genetics , CRISPR-Cas Systems , Exons/genetics , Male , Transcriptome , Biomarkers/blood , Biomarkers/cerebrospinal fluid
7.
J Pharm Biomed Anal ; 249: 116347, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39029355

ABSTRACT

Gnetum montanum Markgr. (Gnetaceae) is a commonly used traditional herbal medicine among the Yao ethnic group, with potential effects in preventing and treating tumors. However, the substance basis of its anti-tumor properties remains unclear. This study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to identify the chemical components of G. montanum extract (GME) and its absorbed prototypes in cynomolgus monkey plasma after oral administration. A total of 57 compounds were detected in the GME, with 14 compounds in positive ion mode and 43 compounds in negative ion mode. In the cynomolgus monkey plasma, 17 compounds were identified, with 3 compounds in positive ion mode and 14 compounds in negative ion mode. Subsequently, we utilized high content screening technology to investigate the anti-tumor effects of GME on colon cancer, lung cancer, breast cancer, gastric cancer, liver cancer, and esophageal cancer. We found that the GME exhibited significant proliferation inhibition on colon cancer cells SW480, with an IC50 value of 50.77 µg/mL. Further research using component separation and pharmacological tracking revealed that the F2 component of the GME demonstrated notable anti-tumor effects. Through UPLC-MS identification, the chemical components in the F2 fraction were identified as pinoresinol diglucoside, (+)-pinoresinol-4-O-beta-D-glucopyranoside, ursolic acid, and gnetol. In conclusion, this study contributes to elucidating the anti-tumor pharmacological basis of GME and provides robust support for future drug design and development.


Subject(s)
Antineoplastic Agents, Phytogenic , Macaca fascicularis , Plant Extracts , Animals , Administration, Oral , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/blood , Humans , Cell Line, Tumor , Male , Cell Proliferation/drug effects , Mass Spectrometry/methods , Female , Tandem Mass Spectrometry/methods
8.
Xenobiotica ; : 1-6, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39067010

ABSTRACT

Increasing complexity of mAbs in development creates challenges in predicting human pharmacokinetic (PK) parameters from preclinical data. The aim of this analysis was to identify optimal allometric scaling exponents.Data were extracted from literature to create a central database (currently the largest available published database) of two-compartment model parameters for mAbs (n = 59) in cynomolgus monkey (CM) and human.Global allometric exponents were calculated and drug-dependent factors were investigated as potential variables in determining the optimal scaling factor.The global exponents for scaling CM mAb PK data were 0.74 (CL), 0.80 (CL with Fc-modified mAbs excluded), 0.44 (CL with Fc-modified mAbs only), 0.71 (Q), 1.12 (V1), and 0.99 (V2). These values are in line with previously published literature values.

9.
Sci Rep ; 14(1): 12251, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806615

ABSTRACT

Mesenchymal stem cells (MSCs) have demonstrated promising advantages in the therapies of many diseases, while its multi-directional differentiation potential and immunotoxicity are the major concerns hindered their clinical translation. In this study, human umbilical Mesenchymal stem cell (hUC-MSCs) were labeled with a near-infrared fluorescent dye DiR before infused into cynomolgus monkeys, and the amount of hUC-MSCs in the peripheral blood were dynamically estimated from 5 min to 28 days post a single administration at 3 × 106 cells/kg and 2 × 107 cells/kg intravenously. As results, some hUC-MSCs distributed to the whole body within 5 min, while most of the cells accumulate in the lungs along with the systemic blood circulation, and subsequently released into the blood. The toxicity potentials of hUC-MSCs were investigated in another 30 cynomolgus monkeys, and the cells were repeatedly administrated at doses of 3 × 106 cells/kg and 2 × 107 cells/kg for 5 times on a weekly basis, with a recovery period of 1 months. hUC-MSCs showed no obvious toxic effects in cynomolgus monkeys, except xenogeneic immune rejection to human stem cells. Low levels of the hUC-MSC gene were detected in the peripheral blood of a few animals administered 2 × 107 cells/kg at 30 min subsequent to the first and last administration, and there was no significant difference in the copy number of the hUC-MSC gene in the blood samples compared with the first and last administration, indicating that the hUC-MSC was not significantly amplified in vivo, and it its safe in non-human primates. Our study for the first time verified the safety of long-term use of hUC-MSCs in primates. We have pioneered a technology for the real-time detection of hUC-MSCs in peripheral blood and provide dynamicand rapid monitoring of the distribution characteristics of hUC-MSCs in vivo. Here, we provide data supporting the application of such products for clinical treatment and the application of stem cells in major refractory diseases and regenerative medicine.


Subject(s)
Macaca fascicularis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Umbilical Cord/cytology , Mesenchymal Stem Cell Transplantation/methods , Male , Cell Differentiation , Female
10.
Circulation ; 150(8): 611-621, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38666382

ABSTRACT

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.


Subject(s)
Induced Pluripotent Stem Cells , Macaca fascicularis , Myocardial Infarction , Myocytes, Cardiac , Spheroids, Cellular , Animals , Induced Pluripotent Stem Cells/transplantation , Induced Pluripotent Stem Cells/cytology , Humans , Myocytes, Cardiac/transplantation , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Spheroids, Cellular/transplantation , Regeneration , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/pathology , Male , Stem Cell Transplantation/methods , Disease Models, Animal
11.
Xenobiotica ; 54(4): 201-210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563808

ABSTRACT

The novel anti-Parkinson disease drug, FLZ, had a complicated drug absorption and metabolise process reported in single-dose studies. A multi-peak absorption peak phenomenon was found.This study focused on the multi-dose pharmacokinetics (PK) characteristics of FLZ, T1, and T2 in cynomolgus monkeys and raised discussion on its multi-peak absorption situation. Different doses of FLZ ranging from 75 to 300 mg/kg were administered orally to 16 cynomolgus monkeys. The whole treatment period lasted for 42 days with FLZ once a day.The primary metabolites of FLZ were Target1 (T1) and Target2 (T2), which had plasma exposure (calculated as AUC0-24, day 42) approximately 2 and 10 times higher than the parent drug. The proportion of plasma exposure increase was lower than the proportion of dose increase in FLZ, T1, and T2.Gender influenced its exposure (AUC0-24) with approximately 3-fold higher in males than females. There was no significant accumulation of T1 and T2. Enterohepatic Circulation (EHC) and gastrointestinal (GI) tract absorption may be involved in the mechanism of multi-peak characteristics.


Subject(s)
Antiparkinson Agents , Macaca fascicularis , Animals , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/administration & dosage , Male , Female , Administration, Oral , Dose-Response Relationship, Drug
12.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581236

ABSTRACT

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Subject(s)
Endothelial Cells , Ovary , Female , Animals , Ovary/metabolism , Endothelial Cells/metabolism , Neurotensin/metabolism , Adherens Junctions/metabolism , Capillary Permeability , Cadherins/genetics , Cadherins/metabolism , Macaca/metabolism , Permeability , Endothelium, Vascular/metabolism , Mammals/metabolism
13.
Int J Toxicol ; 43(4): 368-376, 2024.
Article in English | MEDLINE | ID: mdl-38501993

ABSTRACT

In a 3-month toxicity study in cynomolgus monkeys at a European contract laboratory, animals were infected with HAV, initially resulting in hepatic injury being incorrectly attributed to the test compound. Elevated serum ALT/AST/GLDH (5- to 10-fold) were noted in individual animals from all groups including controls, with no apparent dose, exposure, or time-related relationship. Liver histopathology revealed minimal to slight inflammatory cell accumulation in periportal zones of most animals, and minimal to slight hepatocyte degeneration/necrosis in 10/42 animals from all groups. As these findings were more pronounced in 6 drug-treated animals, including 2/6 in the low dose group, the draft report concluded: "treatment-related hepatotoxicity at all dose levels precluded determination of a NOAEL." However, the unusual pattern of hepatotoxicity suggested a factor other than drug exposure might have caused the hepatic effects. Therefore, snap-frozen liver samples were tested for hepatitis viruses using a PCR method. Tests for hepatitis B, C, and E virus were negative; however, 20/42 samples were positive for hepatitis A virus (HAV). Infection was strongly associated with increased serum ALT/GLDH, and/or hepatocyte degeneration/necrosis. Re-evaluation of the study in light of these data concluded that the hepatic injury was not drug-related. A subsequent 6-month toxicology study in HAV-vaccinated cynomolgus monkeys confirmed the absence of hepatotoxicity. Identification of HAV infection supported progression of the drug candidate into later clinical trials. Although rarely investigated, subclinical HAV infection has occasionally been reported in laboratory primates, including those used for toxicology studies and it may be more prevalent than the literature indicates.


Subject(s)
Hepatitis A , Liver , Macaca fascicularis , Animals , Male , Liver/drug effects , Liver/pathology , Female , Hepatitis A virus/drug effects , Chemical and Drug Induced Liver Injury , Alanine Transaminase/blood , Toxicity Tests
14.
Article in English | MEDLINE | ID: mdl-38367406

ABSTRACT

An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.


Subject(s)
Prodrugs , Tandem Mass Spectrometry , Animals , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Macaca fascicularis , Liquid Chromatography-Mass Spectrometry , Reproducibility of Results
15.
J Med Primatol ; 53(2): e12693, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374540

ABSTRACT

This review on cynomolgus monkey (Macaca fascicularis) blastoids discusses a breakthrough in modeling early non-human primate embryogenesis, offering insights into embryonic development and implantation processes. It acknowledges ethical challenges and animal welfare considerations in developmental biology, suggests potential applications in human reproductive medicine, and highlights the need for ongoing ethical and technical refinement.


Subject(s)
Developmental Biology , Primates , Pregnancy , Female , Animals , Macaca fascicularis
16.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38287904

ABSTRACT

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Subject(s)
Cytoskeletal Proteins , Neural Tube Defects , Animals , Cytoskeletal Proteins/metabolism , Neural Tube/metabolism , Macaca fascicularis , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Neural Tube Defects/veterinary , Neuroepithelial Cells/metabolism , Folic Acid/metabolism , Organoids , Cytoskeleton
17.
J Med Primatol ; 53(1): e12668, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37583034

ABSTRACT

Acute gastric dilatation (AGD) is one of the most prevalent and life-threatening diseases in nonhuman primates worldwide. However, the etiology of this syndrome has not been determined. Recently, sudden death occurred in a 7-year-old female cynomolgus monkey with a history of fecal microbiota transplantation using diarrheic stools. The monkey had undergone surgery previously. On necropsy, gastric dilatation and rupture demonstrated a tetrad arrangement on histopathologic examination. On 16S rRNA sequencing, a high population of Clostridium ventriculi was identified in the duodenum adjacent to stomach but not in the colon. This paper is the first report of Clostridium ventriculi infection in a cynomolgus macaque with acute gastric dilatation and rupture.


Subject(s)
Clostridium , Gastric Dilatation , Female , Animals , Macaca fascicularis , Gastric Dilatation/veterinary , Gastric Dilatation/pathology , RNA, Ribosomal, 16S
18.
Stem Cell Reports ; 18(11): 2016-2037, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37863046

ABSTRACT

For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.


Subject(s)
Expeditions , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Chlorocebus aethiops , Macaca mulatta , Cell Line , Induced Pluripotent Stem Cells/metabolism , Macaca fascicularis
19.
J Pharmacol Toxicol Methods ; 123: 107298, 2023.
Article in English | MEDLINE | ID: mdl-37480964

ABSTRACT

Microsampling, a reduced volume sampling method, has successfully gained attention at the International Conference on Harmonization (ICH) level and established benefits support its use in Toxicokinetic (TK) studies. These improved sampling techniques are less invasive and in large animal species improve animal welfare (refinement). To evaluate if the plasma concentrations of drugs were influenced by the blood sampling method, the traditional method from femoral vein and microsampling from tail vein in Cynomolgus monkeys were compared. The pharmacokinetic parameters (Cmax, Tmax and AUC) of four drugs (selected based on acid-base and volume of distribution properties) in non-human primate were correlated. The plasma samples were quantified using standard LC-MS/MS methods, qualified to evaluate the precision and accuracy before the analysis of real samples. The results reported in this work demonstrated the suitability of microsampling in supporting PK/TK studies in non-human primates. The data show that the exposure of drugs tested after blood collection using standard procedure from femoral vein and microsampling from tail vein is correlated and is not influenced by acid-base characteristics and volume of distribution.


Subject(s)
Blood Specimen Collection , Tandem Mass Spectrometry , Animals , Macaca fascicularis , Chromatography, Liquid , Blood Specimen Collection/methods , Capillaries
20.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(7): 862-867, 2023 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-37460184

ABSTRACT

Objective: To investigate the feasibility of establishing an anterior cruciate ligament (ACL) reconstruction model using hamstring tendon autograft in cynomolgus monkeys. Methods: Twelve healthy adult male cynomolgus monkeys, weighing 8-13 kg, were randomly divided into two groups ( n=6). In the experimental group, the ACL reconstruction model of the right lower limb was prepared by using a single bundle of hamstring tendon, and the ACL of the right lower limb was only cut off in the control group. The survival of animals in the two groups was observed after operation. Before operation and at 3, 6, and 12 months after operation, the knee range of motion, thigh circumference, and calf circumference of the two groups were measured; the anterior tibial translation D-value (ATTD) was measured by Ligs joint ligament digital body examination instrument under the loads of 13-20 N, respectively. At the same time, the experimental group underwent MRI examination to observe the graft morphology and the signal/ noise quotient (SNQ) was caculated. Results: All animals survived to the end of the experiment. In the experimental group, the knee range of motion, thigh circumference, and calf circumference decreased first and then gradually increased after operation; the above indexes were significantly lower at 3 and 6 months after operation than before operation ( P<0.05), and no significant difference was found between pre-operation and 12 months after operation ( P>0.05). In the control group, there was no significant change in knee range of motion after operation, showing no significant difference between pre- and post-operation ( P>0.05), but the thigh circumference and calf circumference gradually significantly decreased with time ( P<0.05), and the difference was significant when compared with those before operation ( P<0.05). At 6 and 12 months after operation, the thigh circumference and calf circumference were significantly larger in the experimental group than in the control group ( P<0.05). At 3 and 6 months after operation, the knee range of motion was significantly smaller in the experimental group than in the control group ( P<0.05). Under the loading condition of 13-20 N, the ATTD in the experimental group increased first and then decreased after operation; and the ATTD significantly increased at 3, 6 months after operation when compared with the value before operation ( P<0.05). But there was no significant difference between the pre-operation and 12 months after operation ( P>0.05). There was no significant change in ATTD in the control group at 3, 6, and 12 months after operation ( P>0.05), and which were significantly higher than those before operation ( P<0.05). At each time point after operation, the ATTD was significantly smaller in the experimental group than in the control group under the same load ( P<0.05). The MRI examination of the experimental group showed that the ACL boundary gradually became clear after reconstruction and was covered by the synovial membrane. The SNQ at each time point after operation was significantly higher than that before operation, but gradually decreased with time, and the differences between time points were significant ( P<0.05). Conclusion: The ACL reconstruction model in cynomolgus monkey with autogenous hamstring tendon transplantation was successfully established.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Tendons , Animals , Male , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Hamstring Tendons/surgery , Knee Joint/surgery , Macaca fascicularis , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL