Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Metab Brain Dis ; 37(6): 1863-1874, 2022 08.
Article in English | MEDLINE | ID: mdl-35759072

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Animals , Brain Injuries, Traumatic/drug therapy , Brain Stem , Cystathionine , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/pharmacology , Hypothalamus/metabolism
2.
BMC Neurosci ; 20(1): 1, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30602386

ABSTRACT

BACKGROUND: Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. RESULTS: Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3-100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3-3 µg/paw), HC-030031 (100-316 µg/paw) and SKF-96365 (10-30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3-30 µg/paw), HC-030031 (100-1000 µg/paw) and SKF-96365 (10-100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-ß-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. CONCLUSIONS: Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hydrogen Sulfide/metabolism , Hyperalgesia/metabolism , Transient Receptor Potential Channels/metabolism , Acetanilides/pharmacology , Analgesics/pharmacology , Animals , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cystathionine beta-Synthase/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Female , Formaldehyde , Hydroxylamine/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Imidazoles/pharmacology , Nociception/drug effects , Nociception/physiology , Purines/pharmacology , Rats, Wistar , Skin/innervation , Skin/metabolism , Spinal Nerve Roots/drug effects , Spinal Nerve Roots/metabolism , Spinal Nerve Roots/pathology , Sulfites
3.
Clin. biomed. res ; 38(1): 50-57, 2018.
Article in English | LILACS | ID: biblio-994866

ABSTRACT

Introduction: Homocysteine (Hcy) tissue accumulation occurs in a metabolic disease characterized biochemically by cystathionine ß-synthase (CBS) deficiency and clinically by mental retardation, vascular problems, and skeletal abnormalities. Previous studies indicate the occurrence of DNA damage secondary to hyperhomocysteinemia and it was observed that DNA damage occurs in leukocytes from CBS-deficient patients. This study aimed to investigate whether an oxidative mechanism could be involved in DNA damage previously found and investigated the in vitro effect of N-acety-L-cysteine (NAC) on DNA damage caused by high Hcy levels. Methods: We evaluated a biomarker of oxidative DNA damage in the urine of CBS­deficient patients, as well as the in vitro effect of NAC on DNA damage caused by high levels of Hcy. Moreover, a biomarker of lipid oxidative damage was also measured in urine of CBS deficient patients. Results: There was an increase in parameters of DNA (8-oxo-7,8-dihydro-2'- deoxyguanosine) and lipid (15-F2t-isoprostanes levels) oxidative damage in CBS-deficient patients when compared to controls. In addition, a significant positive correlation was found between 15-F2t-isoprostanes levels and total Hcy concentrations. Besides, an in vitro protective effect of NAC at concentrations of 1 and 5 mM was observed on DNA damage caused by Hcy 50 µM and 200 µM. Additionally, we showed a decrease in sulfhydryl content in plasma from CBS-deficient patients when compared to controls. Discussion: These results demonstrated that DNA damage occurs by an oxidative mechanism in CBS deficiency together with lipid oxidative damage, highlighting the NAC beneficial action upon DNA oxidative process, contributing with a new treatment perspective of the patients affected by classic homocystinuria.


Subject(s)
Humans , Female , Child , Adolescent , Adult , Young Adult , Acetylcysteine/pharmacology , DNA Damage , Oxidative Stress , Cystathionine/metabolism , Deoxyguanosine/urine , Homocystinuria/genetics , Antioxidants/pharmacology , Biomarkers/urine , Case-Control Studies , Creatinine/urine , Comet Assay , Cystathionine/biosynthesis , Cystathionine/blood , Isoprostanes/analysis , Deoxyguanosine/analogs & derivatives , Homocysteine/blood , Homocystinuria/blood
SELECTION OF CITATIONS
SEARCH DETAIL