Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000353

ABSTRACT

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Subject(s)
Actin Cytoskeleton , Connexin 26 , Connexin 43 , Gap Junctions , rhoA GTP-Binding Protein , Actin Cytoskeleton/metabolism , rhoA GTP-Binding Protein/metabolism , Gap Junctions/metabolism , Connexin 43/metabolism , Connexin 26/metabolism , Humans , Animals , Cell Membrane/metabolism , Actins/metabolism
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1027382

ABSTRACT

Objective:To identify micronuclei through the cytochalasin B blocking micronucleus method-based assay using scanning microscope, combined with the slide scanning software Metafer 4 and, accordingly, to establish a dose-response relationship between the dose of 60Co γ-rays and the frequency of micronuclei in human peripheral blood lymphocytes using artificial intelligence-based color recognition. Methods:Blood samples were collected from four healthy individuals (two men and two women) and were then exposed to varying doses of 60Co γ-ray radiation (0, 0.25, 0.5, 1, 2, 3, 4, 5 Gy) at a dosage rate of 0.74 Gy/min. Micronucleus slides were prepared as per the GBZ 128-2023 standard. The numbers of binuclear cells and micronuclei were recorded using an artificial intelligence-based color recognition analysis system. The dose-response curve was determined through fitting using the CABAS software. Then, the doses to both independent samples were estimated based on the curve. Results:Within a dose range of 0 to 5 Gy, the fitted micronucleus dose-response curve aligned with a quadratic polynomial model, with a regression equation of y = 0.032 1 D2+ 0.023 7 D+ 0.012 7 ( D denoting the dose, correlation coefficient R2=0.998). The dose estimations from the validation samples closely corresponded to the actual irradiation doses. Conclusions:Establishing the micronucleus dose-response curve provides a feasible method and basis for the rapid and accurate estimation of radiation biological doses in laboratory automation.

3.
Curr Issues Mol Biol ; 45(10): 7827-7841, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37886937

ABSTRACT

Immunotherapy represents an innovative approach to cancer treatment, based on activating the body's own immune system to combat tumor cells. Among various immunotherapy strategies, dendritic cell vaccines hold a special place due to their ability to activate T-lymphocytes, key players in cellular immunity, and direct them to tumor cells. In this study, the influence of dendritic cells processed with tumor-derived vesicles on the viability of melanoma cells in vitro was investigated. Dendritic cells were loaded with tumor-derived vesicles, after which they were used to activate T-cells. The study demonstrated that such modified T-cells exhibit high activity against melanoma cells, leading to a decrease in their viability. Our analysis highlights the potential efficacy of this approach in developing immunotherapy against melanoma. These results provide new prospects for further research and the development of antitumor strategies based on the mechanisms of T-lymphocyte activation using tumor-derived vesicles.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-37259432

ABSTRACT

Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 µM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.

5.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176039

ABSTRACT

Multiple sclerosis (MS) is an incurable, progressive chronic autoimmune demyelinating disease. Therapy for MS is based on slowing down the processes of neurodegeneration and suppressing the immune system of patients. MS is accompanied by inflammation, axon-degeneration and neurogliosis in the central nervous system. One of the directions for a new effective treatment for MS is cellular, subcellular, as well as gene therapy. We investigated the therapeutic potential of adipose mesenchymal stem cell (ADMSC) derived, cytochalasin B induced artificial microvesicles (MVs) expressing nerve growth factor (NGF) on a mouse model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE). These ADMSC-MVs-NGF were tested using histological, immunocytochemical and molecular genetic methods after being injected into the tail vein of animals on the 14th and 21st days post EAE induction. ADMSC-MVs-NGF contained the target protein inside the cytoplasm. Their injection into the caudal vein led to a significant decrease in neurogliosis at the 14th and 21st days post EAE induction. Artificial ADMSC-MVs-NGF stimulate axon regeneration and can modulate gliosis in the EAE model.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Nerve Growth Factor/genetics , Axons/metabolism , Nerve Regeneration , Multiple Sclerosis/pathology , Mice, Inbred C57BL
6.
Curr Issues Mol Biol ; 45(3): 2431-2443, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36975528

ABSTRACT

Extracellular vesicles (EVs) are promising therapeutic instruments and vectors for therapeutics delivery. In order to increase the yield of EVs, a method of inducing EVs release using cytochalasin B is being actively developed. In this work, we compared the yield of naturally occurring extracellular vesicles and cytochalasin B-induced membrane vesicles (CIMVs) from mesenchymal stem cells (MSCs). In order to maintain accuracy in the comparative analysis, the same culture was used for the isolation of EVs and CIMVs: conditioned medium was used for EVs isolation and cells were harvested for CIMVs production. The pellets obtained after centrifugation 2300× g, 10,000× g and 100,000× g were analyzed using scanning electron microscopy analysis (SEM), flow cytometry, the bicinchoninic acid assay, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). We found that the use of cytochalasin B treatment and vortexing resulted in the production of a more homogeneous population of membrane vesicles with a median diameter greater than that of EVs. We found that EVs-like particles remained in the FBS, despite overnight ultracentrifugation, which introduced a significant inaccuracy in the calculation of the EVs yield. Therefore, we cultivated cells in a serum-free medium for the subsequent isolation of EVs. We observed that the number of CIMVs significantly exceeded the number of EVs after each step of centrifugation (2300× g, 10,000× g and 100,000× g) by up to 5, 9, and 20 times, respectively.

7.
J Funct Foods ; 101: 105407, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36627926

ABSTRACT

Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.

8.
Curr Issues Mol Biol ; 45(1): 571-592, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36661524

ABSTRACT

Tumor-necrosis-factor-associated apoptosis-inducing ligand (TRAIL) is one of the most promising therapeutic cytokines that selectively induce apoptosis in tumor cells. It is known that membrane vesicles (MVs) can carry the surface markers of parental cells. Therefore, MVs are of interest as a tool for cell-free cancer therapy. In this study, membrane vesicles were isolated from TRAIL-overexpressing mesenchymal stem cells using cytochalasin B treatment (CIMVs). To evaluate the antitumor effect of CIMVs-TRAIL in vivo, a breast cancer mouse model was produced. The animals were intratumorally injected with 50 µg of native CIMVs or CIMVs-TRAIL for 12 days with an interval of two days. Then, tumor growth rate, tumor necrotic area, the expression of the apoptosis-related genes CASP8, BCL-2, and BAX and the level of CASP8 protein were analyzed. A 1.8-fold increase in the CAS8 gene mRNA and a 1.7-fold increase in the CASP8 protein level were observed in the tumors injected with CIMVs-TRAIL. The expression of the anti-apoptotic BCL-2 gene in the CIMV-TRAIL group remained unchanged, while the mRNA level of the pro-apoptotic BAX gene was increased by 1.4 times, which indicated apoptosis activation in the tumor tissue. Thus, CIMVs-TRAIL were able to activate the extrinsic apoptosis pathway and induce tumor cell death in the breast cancer mouse model.

9.
Methods Mol Biol ; 2519: 83-91, 2023.
Article in English | MEDLINE | ID: mdl-36066712

ABSTRACT

Cytokinesis blocked micronuclei (CBMN) assay is a rapid and sensitive analysis of chromosome aberrations and miss assortments during cell division. Genotoxic agent exposure produces DNA damage and chromosome fragments. Fragmented chromosomes without centromere failed to attach kinetochore which segregates a pair of homologous chromosomes to each daughter cells at cytokinesis, hence leading to form micronuclei. Chromosome or fragments of chromosome can also form micronuclei when they are not accurately sorted to daughter cells. Using cytochalasin B, an actin inhibitor, blocks cytokinesis of which completion leads serration appearance formed with two daughter cells while nuclei segregation is undergoing. As a result, one cell having two daughter nuclei, i.e., binucleated cell, is produced. By analyzing these binucleated cells, chromosome aberrations can be estimated as well as popular chromosome aberration analysis. Frequency of micronuclei formation predicts the testing agents' genotoxicity. By combining use with centromere-specific probes or DNA damage signal probes, the nature of genotoxicity of tested agents can be estimated.


Subject(s)
Chromosome Aberrations , Cytokinesis , Cell Division , Centromere , Chromosome Aberrations/chemically induced , DNA Probes , Humans , Lymphocytes , Micronucleus Tests
10.
Vaccines (Basel) ; 10(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366388

ABSTRACT

Artificial antigen-presenting cells (aAPCs) that stably express particular HLA and co-stimulatory molecules by gene transfer have been developed to effectively stimulate T cells. To investigate whether cytochalsin-B-induced membrane vesicles derived from aAPCs (AP-CIMVs) have similar antigen-presenting functions as a cell-free system, T cell responses to different types of antigen presentation were measured using Jurkat reporter cells. First, the aggregation of AP-CIMV, which affects the measurement of function, was inhibited by nuclease treatment to produce uniform AP-CIMVs. The Green fluorescent protein (GFP) expression in Jurkat reporter cells was induced in a dose-dependent manner in groups stimulated with anti-CD3 antibody-coated AP-CIMVs and aAPCs, and anti-CD3/CD28 Dynabead. When Jurkat reporter cells expressing specific T cell receptors were stimulated by AP-CIMVs and aAPCs loaded with CMV pp65 peptide, AP-CIMVs showed similar stimulatory effects to that by aAPC. However, when these Jurkat reporter cells were stimulated by aAPCs endogenously expressing CMV pp65 antigen and their AP-CIMVs, the GFP expression rate by AP-CIMVs was 8.4%, which was significantly lower than 53.2% by aAPCs. Although this study showed a limited T-cell-stimulating effect of AP-CIMVs on endogenously processed antigen presentation, these results provide useful information for the development of improved cell-free systems for T cell stimulation in the future.

11.
Pharmaceutics ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432733

ABSTRACT

Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines­cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines­murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines­lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.

12.
Curr Issues Mol Biol ; 44(11): 5363-5378, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36354675

ABSTRACT

To date, there are numerous protocols for the isolation of extracellular vesicles (EVs). Depending on the isolation method, it is possible to obtain vesicles with different characteristics, enriched with specific groups of proteins, DNA and RNA, which affect similar types of cells in the opposite way. Therefore, it is important to study and compare methods of vesicle isolation. Moreover, the differences between the EVs derived from tumor and mesenchymal stem cells are still poorly understood. This article compares EVs from human glioblastoma cells and mesenchymal stem cells (MSCs) obtained by two different methods, ultracentrifugation and cytochalasin B-mediated induction. The size of the vesicles, the presence of the main EV markers, the presence of nuclear and mitochondrial components, and the molecular composition of the vesicles were determined. It has been shown that EVs obtained by both ultracentrifugation and cytochalasin B treatment have similar features, contain particles of endogenous and membrane origin and can interact with monolayer cultures of tumor cells.

13.
Mol Hum Reprod ; 28(11)2022 10 28.
Article in English | MEDLINE | ID: mdl-36264122

ABSTRACT

It is widely accepted that cytochalasin B (CB) is required in enucleation of the oocyte in order to stabilize the cytoplasm. However, CB treatment results in the uneven distribution of mitochondria, with aggregation towards the nucleus, which might compromise the efficiency and safety of a three-parent embryo. Here, we demonstrated that CB treatment affected mitochondrial dynamics, spindle morphology and mitochondrial DNA carryover in a concentration-dependent manner. Our results showed that mouse oocytes treated with over 1 µg/ml CB exhibited a more aggregated pattern of mitochondria and diminished filamentous actin expression. Abnormal fission of mitochondria together with changes in spindle morphology increased as CB concentration escalated. Based on the results of mouse experiments, we further revealed the practical value of these findings in human oocytes. Chip-based digital PCR and pyrosequencing revealed that the mitochondrial carryover in reconstituted human embryos was significantly reduced by modifying the concentration of CB from the standard 5 µg/ml to 1 µg/ml before spindle transfer and pronuclear transfer. In conclusion, our findings provide an optimal manipulation for improving the efficiency and safety of mitochondrial replacement therapy.


Subject(s)
Embryo, Mammalian , Mitochondrial Replacement Therapy , Humans , Mice , Animals , Cytochalasin B/pharmacology , Cytochalasin B/metabolism , Oocytes/metabolism , DNA, Mitochondrial/genetics
14.
Cells ; 11(10)2022 05 12.
Article in English | MEDLINE | ID: mdl-35626666

ABSTRACT

Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation. In particular, the cytoskeleton affects the fate of mesenchymal stem cells (MSCs), which are highly attractive candidates for cell therapy approaches due to their capacity for self-renewal and multi-lineage differentiation. Cytochalasin B (CB), a cyto-permeable mycotoxin, is able to inhibit the formation of actin microfilaments, resulting in direct effects on cell biological properties. Here, we investigated for the first time the effects of different concentrations of CB (0.1-10 µM) on human adipose-derived stem cells (hASCs) both after 24 h (h) of CB treatment and 24 h after CB wash-out. CB influenced the metabolism, proliferation, and morphology of hASCs in a dose-dependent manner, in association with progressive disorganization of actin microfilaments. Furthermore, the removal of CB highlighted the ability of cells to restore their cytoskeletal organization. Finally, atomic force microscopy (AFM) revealed that cytoskeletal changes induced by CB modulated the viscoelastic properties of hASCs, influencing their stiffness and viscosity, thereby affecting adipogenic fate.


Subject(s)
Adipocytes , Stem Cells , Adipogenesis/physiology , Adipose Tissue , Cytochalasin B/pharmacology , Humans
15.
J Tradit Complement Med ; 12(2): 195-205, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528476

ABSTRACT

Chronic insulin resistance suppresses muscle and liver response to insulin, which is partially due to impaired vesicle trafficking. We report here that a formula consisting of resveratrol, ferulic acid and epigallocatechin-3-O-gallate is more effective in ameliorating muscle and hepatic insulin resistance than the anti-diabetic drugs, metformin and AICAR. The formula enhanced glucose transporter-4 (GLUT4) translocation to the plasma membrane in the insulin-resistant muscle cells by regulating both insulin-independent (calcium and AMPK) and insulin-dependent (PI3K) signaling molecules. Particularly, it regulated the subcellular location of GLUT4 through endosomes to increase glucose uptake under insulin-resistant condition. Meanwhile, this phytochemicals combination increased glycogen synthesis and decreased glucose production in the insulin-resistant liver cells. On the other hand, this formula also showed anti-diabetic potential by the reduction of lipid content in the myotubes, hepatocytes, and adipocytes. This study demonstrated that the three phenolic compounds in the formula could work in distinct mechanisms and enhance both insulin-dependent and independent vesicles trafficking and glucose transport mechanisms to improve carbohydrate and lipid metabolism.

16.
Eur Biophys J ; 51(4-5): 353-363, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35532810

ABSTRACT

Dielectric spectroscopy has been used in the study and development of non-invasive glucose monitoring (NIGM) sensors, including the range of microwave frequencies. Dielectric relaxation of red blood cell (RBC) cytosolic water in the microwave frequency band has been shown to be sensitive to variations in the glucose concentration of RBC suspensions. It has been hypothesized that this sensitivity stems from the utilization of D-glucose by RBCs. To verify this proposition, RBCs were pretreated with inhibitors of D-glucose uptake (cytochalasin B and forskolin). Then their suspensions were exposed to different D-glucose concentrations as measured by microwave dielectric spectroscopy (MDS) in the 500 MHz-40 GHz frequency band. After incubation of RBCs with either inhibitor, the dielectric response of water in the cytoplasm, and specifically its relaxation time, demonstrated minimal sensitivity to the change of D-glucose concentration in the medium. This result allows us to conclude that the sensitivity of MDS to glucose uptake is associated with variations in the balance of bulk and bound RBC cytosolic water due to intracellular D-glucose metabolism, verifying the correctness of the initial hypothesis. These findings represent a further argument to establish the dielectric response of water as a marker of glucose variation in RBCs.


Subject(s)
Blood Glucose Self-Monitoring , Microwaves , Blood Glucose/analysis , Blood Glucose/metabolism , Dielectric Spectroscopy , Erythrocytes/chemistry , Glucose/metabolism , Suspensions , Water/chemistry
17.
Bionanoscience ; 12(2): 293-301, 2022.
Article in English | MEDLINE | ID: mdl-35261871

ABSTRACT

At present, there is an increasing interest in the potential role of extracellular vesicles (EVs), acting as multi-signal messengers of the tumor stroma, in the development and progression of tumor. Tumor cell-derived EVs are considered a potential vector for the targeted delivery of antitumor agents due to the ability to fuse with parental cells through endocytosis and release their contents into the cytoplasm of the recipient cell. Tumor cell-derived EVs could be also used for priming immune cells and therapeutic vaccine development. It is also known that mesenchymal stem cells (MSCs) have a tropism toward tumor niches. It is believed that MSC migration to the tumor is due to its inflammatory signaling. Presumably, with the accumulation of MSCs at tumor sites, these cells differentiate into pericytes or tumor-associated fibroblasts, thereby forming a supporting tumor growth microenvironment. However, besides the ability to promote tumor progression, MSCs can also suppress its growth by inhibiting proliferation and cell cycle progression, and angiogenesis. Thus, the further studies of the MSC role in TME and MSC interaction with other cells of the tumor stroma, including through EVs, are of particular interest. To increase the yield of vesicles the isolation method based on pharmacological disorganization of the actin cytoskeleton induced by treating with cytochalasin B was used in this study. In this investigation the interaction of SH-SY5Y neuroblastoma cell-derived membrane vesicles, obtained using cytochalasin B (CIMVs), with human bone marrow-derived MSCs was analyzed using imaging flow cytometry. Using transmission electron microscopy, it was shown that CIMVs have a size similar to that of natural microvesicles, which is 100-1000 nm. Using imaging flow cytometry, it was shown that after 24 h of co-cultivation 6% of the MSCs contained a large number of CIMVs, and 42% of the MSCs contained a small amount of CIMVs. Cultivation of MSCs with SH-SY5Y cell-derived CIMVs also induced dose-dependent decrease in the expression of CD markers typical for MSCs. Thus, the internalization of SH-SY5Y cell-derived CIMVs within MSCs and the ability of the CIMVs to modulate immunophenotype of the recipient cells were shown. However, further studies are required to determine the effect of CIMVs on pro- or antioncogenic phenotype and function of MSCs.

18.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35137176

ABSTRACT

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Subject(s)
Cytokinesis , Lymphocytes , DNA Damage , Micronucleus Tests/methods , Radiation, Ionizing
19.
FEBS Open Bio ; 12(1): 203-210, 2022 01.
Article in English | MEDLINE | ID: mdl-34738322

ABSTRACT

Tunneling nanotubes (TNTs) are F-actin-based open-ended tubular extensions that form following stresses, such as nutritional deprivation and oxidative stress. The chemotherapy agent 5-fluorouracil (5-FU) represents a significant stressor to cancer cells and induces thymidine deficiency, a state similar to nutritional deprivation. However, the ability of 5-FU to induce TNT formation in cancer cells and potentially enhance survival has not been explored. In this study, we examined whether 5-FU can induce TNT formation in MCF-7 breast cancer cells. Cytotoxic doses of 5-FU (150-350 µm) were observed to significantly induce TNT formation beginning at 24 h after exposure. TNTs formed following 5-FU treatment probably originated as extensions of gap junctions as MCF-7 cells detach from cell clusters. TNTs act as conduits for exchange of cellular components and we observed mitochondrial exchange through TNTs following 5-FU treatment. 5-FU-induced TNT formation was inhibited by over 80% following treatment with the F-actin-depolymerizing agent, cytochalasin B (cytoB). The inhibition of TNTs by cytoB corresponded with increased 5-FU-induced cytotoxicity by 30-62% starting at 48 h, suggesting TNT formation aides in MCF-7 cell survival against 5-FU. Two other widely used chemotherapy agents, docetaxel and doxorubicin induced TNT formation at much lower levels than 5-FU. Our work suggests that the therapeutic targeting of TNTs may increase 5-FU chemotherapy efficacy and decrease drug resistance in cancer cells, and these findings merits further investigation.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Communication , Cell Membrane Structures , Female , Fluorouracil/pharmacology , Humans , MCF-7 Cells , Nanotubes
20.
Nutrients ; 13(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960018

ABSTRACT

Although a very-low-calorie diet (VLCD) is considered safe and has demonstrated benefits among other types of diets, data are scarce concerning its effects on improving health and weight loss in severely obese patients. As part of the personalized weight loss program developed at the Duga Resa Special Hospital for Extended Treatment, Croatia, we evaluated anthropometric, biochemical, and permanent DNA damage parameters (assessed with the cytochalasin B-blocked micronucleus cytome assay-CBMN) in severely obese patients (BMI ≥ 35 kg m-2) after 3-weeks on a 567 kcal, hospital-controlled VLCD. This is the first study on the permanent genomic (in)stability in such VLCD patients. VLCDs caused significant decreases in weight (loss), parameters of the lipid profile, urea, insulin resistance, and reduced glutathione (GSH). Genomic instability parameters were lowered by half, reaching reference values usually found in the healthy population. A correlation was found between GSH decrease and reduced DNA damage. VLCDs revealed susceptible individuals with remaining higher DNA damage for further monitoring. In a highly heterogeneous group (class II and III in obesity, differences in weight, BMI, and other categories) consisting of 26 obese patients, the approach demonstrated its usefulness and benefits in health improvement, enabling an individual approach to further monitoring, diagnosis, treatment, and risk assessment based on changing anthropometric/biochemical VLCD parameters, and CBMN results.


Subject(s)
Caloric Restriction , Diet, Reducing/methods , Obesity, Morbid/diet therapy , Adult , Aged , Energy Intake , Female , Hospitals , Humans , Male , Middle Aged , Weight Reduction Programs
SELECTION OF CITATIONS
SEARCH DETAIL