Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Results Probl Cell Differ ; 73: 147-154, 2024.
Article in English | MEDLINE | ID: mdl-39242378

ABSTRACT

Intercellular communication is indispensable across multicellular organisms, and any aberration in this process can give rise to significant anomalies in developmental and homeostatic processes. Thus, a comprehensive understanding of its mechanisms is imperative for addressing human health-related concerns. Recent advances have expanded our understanding of intercellular communication by elucidating additional signaling modalities alongside established mechanisms. Notably, cellular protrusion-mediated long-range communication, characterized by physical contact through thin and elongated cellular protrusions between cells involved in signal transmission and reception, has emerged as a significant intercellular signaling paradigm. This chapter delves into the exploration of a signaling cellular protrusion termed 'airinemes,' discovered in the zebrafish skin. It covers their identified signaling roles and the cellular and molecular mechanisms that underpin their functionality.


Subject(s)
Cell Communication , Zebrafish , Animals , Cell Communication/physiology , Humans , Signal Transduction/physiology
2.
J Cell Sci ; 136(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37987375

ABSTRACT

Actin-based protrusions are at the base of many fundamental cellular processes, such as cell adhesion, migration and intercellular communication. In recent decades, the discovery of new types of actin-based protrusions with unique functions has enriched our comprehension of cellular processes. However, as the repertoire of protrusions continues to expand, the rationale behind the classification of newly identified and previously known structures becomes unclear. Although current nomenclature allows good categorization of protrusions based on their functions, it struggles to distinguish them when it comes to structure, composition or formation mechanisms. In this Cell Science at a Glance article, we discuss the different types of actin-based protrusions, focusing on filopodia, cytonemes and tunneling nanotubes, to help better distinguish and categorize them based on their structural and functional differences and similarities.


Subject(s)
Actins , Nanotubes , Actins/metabolism , Nanotubes/chemistry , Pseudopodia/metabolism , Cell Communication
3.
Cell Rep ; 42(7): 112818, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37454294

ABSTRACT

Tissue-resident macrophages are heterogeneous and perform location-dependent functions. Skin resident macrophages play intriguing roles in long-distance intercellular signaling by mediating cellular protrusions called airinemes in zebrafish. These macrophages relay signaling molecules containing airineme vesicles between pigment cells, and their absence disrupts airineme-mediated signaling and pigment pattern formation. It is unknown if the same macrophages control both these signaling and typical immune functions or if a separate subpopulation functions in intercellular communication. With high-resolution imaging and genetic ablation approaches, we identify a macrophage subpopulation responsible for airineme-mediated signaling. These seem to be distinct from conventional skin-resident macrophages by their ameboid morphology and faster or expansive migratory behaviors. They resemble ectoderm-derived macrophages termed metaphocytes. Metaphocyte ablation markedly decreases airineme extension and signaling. In addition, these ameboid/metaphocytes require matrix metalloproteinase-9 for their migration and airineme-mediated signaling. These results reveal a macrophage subpopulation with specialized functions in airineme-mediated signaling, which may play roles in other aspects of intercellular communication.


Subject(s)
Matrix Metalloproteinase 9 , Zebrafish , Animals , Zebrafish/genetics , Macrophages , Cell Communication , Signal Transduction
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047428

ABSTRACT

In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism's survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight-in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.


Subject(s)
Cell Communication , Extracellular Vesicles , Cell Differentiation , Biological Transport , Biology
5.
Curr Top Dev Biol ; 150: 1-24, 2022.
Article in English | MEDLINE | ID: mdl-35817500

ABSTRACT

The function of Hedgehog (Hh) as a morphogen results from its long-distance distribution from producing to neighboring receiving cells within the developing tissue. This signal distribution enables, for example, the formation of a concentration gradient eliciting distinct cellular responses that will give rise to spatial patterning. Hh is a lipid modified protein and its dispersion is better guaranteed through cytonemes, cell protrusions that allow direct cell membrane contact and signal transfer at a distance. Hh and its receptor Patched (Ptc) meet at cytoneme contacts in a way that reminds synapses. Both Hh and Ptc require a recycling process prior to presentation in cytonemes. Increasing research on the role of cytonemes in Hh signaling is revealing cellular mechanisms that link signal transport through dynamic cytonemes with concurrent regulation of cell adhesion. The equilibrium between these two processes is being unveiled as crucial to both patterned morphogen distribution and signal transfer. In addition, these discoveries are pushing forward our understanding of the role of extracellular elements involved in the Hh pathway, such as the Hh coreceptors Ihog and Boi and the glypicans Dally and Dally-like protein (Dlp).


Subject(s)
Drosophila Proteins , Hedgehog Proteins , Animals , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Hedgehog Proteins/metabolism , Membrane Glycoproteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology
6.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35062355

ABSTRACT

So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/transmission , HIV-1/pathogenicity , HTLV-I Infections/transmission , Human T-lymphotropic virus 1/pathogenicity , Leukemia-Lymphoma, Adult T-Cell/virology , Animals , CD4-Positive T-Lymphocytes/immunology , HTLV-I Infections/complications , Humans , Mice
7.
Handb Exp Pharmacol ; 269: 29-43, 2021.
Article in English | MEDLINE | ID: mdl-34505202

ABSTRACT

WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.


Subject(s)
Exosomes , Extracellular Vesicles , Ligands , Wnt Proteins , Wnt Signaling Pathway
8.
Elife ; 102021 08 06.
Article in English | MEDLINE | ID: mdl-34355694

ABSTRACT

The conserved family of Hedgehog (Hh) signaling proteins plays a key role in cell-cell communication in development, tissue repair, and cancer progression, inducing distinct concentration-dependent responses in target cells located at short and long distances. One simple mechanism for long distance dispersal of the lipid modified Hh is the direct contact between cell membranes through filopodia-like structures known as cytonemes. Here we have analyzed in Drosophila the interaction between the glypicans Dally and Dally-like protein, necessary for Hh signaling, and the adhesion molecules and Hh coreceptors Ihog and Boi. We describe that glypicans are required to maintain the levels of Ihog, but not of Boi. We also show that the overexpression of Ihog, but not of Boi, regulates cytoneme dynamics through their interaction with glypicans, the Ihog fibronectin III domains being essential for this interaction. Our data suggest that the regulation of glypicans over Hh signaling is specifically given by their interaction with Ihog in cytonemes. Contrary to previous data, we also show that there is no redundancy of Ihog and Boi functions in Hh gradient formation, being Ihog, but not of Boi, essential for the long-range gradient.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Glypicans/metabolism , Hedgehog Proteins/metabolism , Membrane Glycoproteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Cell Communication , Drosophila melanogaster , Fibronectins/metabolism , Microscopy, Fluorescence/methods , Protein Structure, Tertiary , Signal Transduction
9.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028355

ABSTRACT

The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently, we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of mouse embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA and Kainate receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector ß-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localised Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.


Subject(s)
Cell Division , Mouse Embryonic Stem Cells/metabolism , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Wnt Signaling Pathway , Wnt3A Protein/metabolism , Animals , Cell Differentiation , Cell Line , Cell Lineage , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Microscopy, Video , Receptor Cross-Talk , Receptors, AMPA/genetics , Receptors, Kainic Acid/genetics , Time Factors , Wnt3A Protein/genetics , beta Catenin/genetics , beta Catenin/metabolism
10.
Open Biol ; 10(8): 200039, 2020 08.
Article in English | MEDLINE | ID: mdl-32810422

ABSTRACT

Understanding the mechanisms of cell-to-cell communication is one of the fundamental questions in biology and medicine. In particular, long-range signalling where cells communicate over several cell diameters is vital during development and homeostasis. The major morphogens, their receptors and intracellular signalling cascades have largely been identified; however, there is a gap in our knowledge of how such signalling factors are propagated over a long distance. In addition to the diffusion-based propagation model, new modalities of disseminating signalling molecules have been identified. It has been shown that cells can communicate with direct contact through long, thin cellular protrusions between signal sending and receiving cells at a distance. Recent studies have revealed a type of cellular protrusion termed 'airinemes' in zebrafish pigment cell types. They share similarities with previously reported cellular protrusions; however, they also exhibit distinct morphology and features. Airinemes are indispensable for pigment pattern development by mediating long-distance Delta-Notch signalling between different pigment cell types. Notably, airineme-mediated signalling is dependent on skin-resident macrophages. Key findings of airineme-mediated intercellular signalling in pattern development, their interplay with macrophages and their implications for the understanding of cellular protrusion-mediated intercellular communication will be discussed.


Subject(s)
Cell Communication , Cell Surface Extensions/physiology , Macrophages/physiology , Signal Transduction , Animals , Biological Transport , Cell Shape , Cytoplasmic Vesicles/metabolism , Humans , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL