Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Clin Transl Radiat Oncol ; 48: 100812, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044781

ABSTRACT

Purpose: This study explored whether a free-breathing mean heart dose (FB-MHD) of 4 Gy is a reliable dose threshold for selecting left breast cancer patients after modified radical mastectomy suitable for deep inspiration breath-hold (DIBH) and developed anatomical indicators to predict FB-MHD for rapid selection. Materials and methods: Twenty-three patients with left breast cancer treated with DIBH were included to compare FB and DIBH plans. The patients were divided into the high-risk (FB-MHD ≥ 4 Gy) and low-risk (FB-MHD < 4 Gy) groups to compare dose difference, normal tissue complication probability (NTCP) and the DIBH benefits. Another 30 patients with FB only were included to analyze the capacity of distinguishing high-risk heart doses patients according to anatomical metrics, such as cardiac-to-chest Euclidean distance (CCED), cardiac-to-chest gap (CCG), and cardiac-to-chest combination (CCC). Results: All heart doses were significantly lower in patients with DIBH plans than in those with FB plans. Based on FB-MHD of 4 Gy cutoff, the heart dose, NTCP for cardiac death, and benefits from DIBH were significantly higher in the high-risk group than in the low-risk group. The CCED was a valid anatomical indicator with the largest area under the curve (AUC) of 0.83 and maintained 95 % sensitivity and 70 % specificity at the optimal cutoff value of 2.5 mm. Conclusions: An FB-MHD of 4 Gy could be used as an efficient dose threshold for selecting patients suitable for DIBH. The CCED may allow a reliable prediction of FB-MHD in left breast cancer patients at CT simulation.

2.
Med Dosim ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38910070

ABSTRACT

Respiratory motion management is the crucial challenge for safe and effective application of lung stereotactic body radiotherapy (SBRT). The present study implemented lung SBRT treatment in voluntary deep inspiration breath-hold (DIBH) with surface-guided radiotherapy (SGRT) system and evaluated the geometric and dosimetric benefits of DIBH to organs-at-risk (OARs), aiming to advising the choice between DIBH technology and conventional free breathing 4 dimensions (FB-4D) technology. Five patients of lung SBRT treated in DIBH with SGRT at our institution were retrospectively analyzed. CT scans were acquired in DIBH and FB-4D, treatment plans were generated for both respiratory phases. The geometric and dosimetry of tumor, ipsilateral lung, double lungs and heart were compared between the DIBH and FB-4D treatment plans. In terms of target coverage, utilizing DIBH significantly reduced the mean plan target volume (PTV) by 21.9% (p = 0.09) compared to FB-4D, the conformity index (CI) of DIBH and FB-4D were comparable, but the dose gradient index (DGI) of DIBH was higher. With DIBH expanding lung, the volumes of ipsilateral lung and double lungs were 2535.1 ± 403.0cm3 and 4864.3 ± 900.2cm3, separately, 62.2% (p = 0.009) and 73.1% (p = 0.009) more than volumes of ipsilateral lung (1460.03 ± 146.60cm3) and double lungs (2811.25 ± 603.64cm3) in FB-4D. The heart volume in DIBH was 700.0 ± 146.1cm3, 11.6% (p = 0.021) less than that in FB-4D. As for OARs protection, the mean dose, percent of volume receiving > 20Gy (V20) and percent of volume receiving > 5Gy (V5) of ipsilateral lung in DIBH were significantly lower by 33.2% (p = 0.020), 44.0% (p = 0.022) and 24.5% (p = 0.037) on average, separately. Double lungs also showed significant decrease by 31.1% (p = 0.019), 45.5% (p = 0.024) and 20.9% (p = 0.048) on average for mean dose, V20 and V5 in DIBH. Different from the lung, the mean dose and V5 of heart showed no consistency between DIBH and FB-4D, but lower maximum dose of heart was achieved in DIBH for all patients in this study. Appling lung SBRT in DIBH with SGRT was feasibly performed with high patient compliance. DIBH brought significant dosimetric benefits to lung, however, it caused more or less irradiated heart dose that depend on the patients' individual differences which were unpredictable.

3.
Phys Imaging Radiat Oncol ; 30: 100590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38827886

ABSTRACT

Background and purpose: For locally advanced non-small cell lung cancer (LA-NSCLC), intensity-modulated proton therapy (IMPT) can reduce organ at risk (OAR) doses compared to intensity-modulated radiotherapy (IMRT). Deep inspiration breath hold (DIBH) reduces OAR doses compared to free breathing (FB) in IMRT. In IMPT, differences in dose distributions and robustness between DIBH and FB are unclear. In this study, we compare DIBH to FB in IMPT, and IMPT to IMRT. Materials and methods: Fortyone LA-NSCLC patients were prospectively included. 4D computed tomography images (4DCTs) and DIBH CTs were acquired for treatment planning and during weeks 1 and 3 of treatment. A new system for automated robust planning was developed and used to generate a FB and a DIBH IMPT plan for each patient. Plans were compared in terms of dose-volume parameters and normal tissue complication probabilities (NTCPs). Dose recalculations on repeat CTs were used to compare inter-fraction plan robustness. Results: In IMPT, DIBH reduced median lungs Dmean from 9.3 Gy(RBE) to 8.0 Gy(RBE) compared to FB, and radiation pneumonitis NTCP from 10.9 % to 9.4 % (p < 0.001). Inter-fraction plan robustness for DIBH and FB was similar. Median NTCPs for radiation pneumonitis and mortality were around 9 percentage points lower with IMPT than IMRT (p < 0.001). These differences were much larger than between FB and DIBH within each modality. Conclusion: DIBH IMPT resulted in reduced lung dose and radiation pneumonitis NTCP compared to FB IMPT. Inter-fraction robustness was comparable. OAR doses were far lower in IMPT than IMRT.

4.
Eur J Radiol ; 177: 111549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850723

ABSTRACT

OBJECTIVES: To investigate PET/CT registration and quantification accuracy of thoracic lesions of a single 30-second deep-inspiration breath-hold (DIBH) technique with a total-body PET (TB-PET) scanner, and compared with free-breathing (FB) PET/CT. METHODS: 137 of the 145 prospectively enrolled patients finished a routine FB-300 s PET/CT exam and a 30-second DIBH TB-PET with chest to pelvis low dose CT. The total-body FB-300 s, FB-30 s, and DIBH-30 s PET images were reconstructed. Quantitative assessment (SUVmax and SUVmean of lung and other organs), PET/CT registration assessment and lesion analysis (SUVmax, SUVpeak, SUVmean and tumor-background ratio) were compared with Wilcoxon signed-rank tests. RESULTS: The SUVmax and SUVmean of the lung with DIBH-30 s were significantly lower than those with FB. The distances of the liver dome between PET and CT were significantly smaller with DIBH-30 s than with FB. 195 assessable lesions in 106 patients were included, and the detection sensitivity was 97.9 % and 99.0 % in FB-300 s, and DIBH-30 s, respectively. For both small co-identified lesions (n = 86) and larger co-identified lesions with a diameter ≥ 1 cm (n = 91), the lesion SUVs were significantly greater with DIBH-30 s than with FB-300 s. Regarding lesion location, the differences of the SUVs for the lesions in the lower thorax area (n = 97, p < 0.001) were significant between DIBH-30 s and FB-300 s, while these differences were not statistically significant in the upper thorax (n = 80, p > 0.05). The lesion tumor-to-surrounding-background ratio (TsBR) was significantly increased, both in the upper and lower thorax. CONCLUSION: The TB DIBH PET/CT technique is feasible in clinical practice. It reduces the background lung uptake and achieves better registration and lesion quantification, especially in the lower thorax.


Subject(s)
Breath Holding , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Sensitivity and Specificity , Whole Body Imaging , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Female , Middle Aged , Aged , Whole Body Imaging/methods , Adult , Prospective Studies , Aged, 80 and over , Reproducibility of Results , Thoracic Neoplasms/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Inhalation
5.
J Appl Clin Med Phys ; : e14414, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803045

ABSTRACT

PURPOSE: To evaluate the intra-fractional tumor motion in lung stereotactic body radiotherapy (SBRT) with deep inspiration breath-hold (DIBH), and to investigate the adequacy of the current planning target volume (PTV) margins. METHODS: Twenty-eight lung SBRT patients with DIBH were selected in this study. Among the lesions, twenty-three were at right or left lower lobe, two at right middle lobe, and three at right or left upper lobe. Post-treatment gated cone-beam computed tomography (CBCT) was acquired to quantify the intra-fractional tumor shift at each treatment. These obtained shifts were then used to calculate the required PTV margin, which was compared with the current applied margin of 5 mm margin in anterior-posterior (AP) and right-left (RL) directions and 8 mm in superior-inferior (SI) direction. The beam delivery time was prolonged with DIBH. The actual beam delivery time with DIBH (Tbeam_DIBH) was compared with the beam delivery time without DIBH (Tbeam_wo_DIBH) for the corresponding SBRT plan. RESULTS: A total of 113 treatments were analyzed. At six treatments (5.3%), the shifts exceeded the tolerance defined by the current PTV margin. The average shifts were 0.0 ± 1.9 mm, 0.1±1.5 mm, and -0.5 ± 3.7 mm in AP, RL, and SI directions, respectively. The required PTV margins were determined to be 4.5, 3.9, and 7.4 mm in AP, RL, and SI directions, respectively. The average Tbeam_wo_DIBH and Tbeam_DIBH were 2.4 ± 0.4 min and 3.6 ± 1.5 min, respectively. The average treatment slot for lung SBRT with DIBH was 25.3 ± 7.9 min. CONCLUSION: Intra-fractional tumor motion is the predominant source of treatment uncertainties in CBCT-guided lung SBRT with DIBH. The required PTV margin should be determined based on data specific to each institute, considering different techniques and populations. Our data indicate that our current applied PTV margin is adequate, and it is possible to reduce further in the RL direction. The time increase of Tbeam_DIBH, relative to the treatment slot, is not clinically significant.

6.
J Med Radiat Sci ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623813

ABSTRACT

INTRODUCTION: The currently accepted best practice radiation treatment for left breast cancer patients is Deep Inspiration Breath Hold (DIBH) where patients hold a deep breath to reduce late cardiac and pulmonary effects from treatment. DIBH can be challenging and induce or exacerbate anxiety in patients due to the perceived pressure to reduce radiation treatment side effects. This study explored the experiences of patients treated with Deep Inspiration Breath Hold Radiation Therapy (DIBH-RT) to improve patient-centred care and inform the design of multimedia educational tools for future patients undergoing DIBH. METHODS: This descriptive qualitative study was underpinned by a social constructivist approach to create new educational and patient care approaches based on previous patients' experiences. Semi-structured interviews were conducted with patients who had completed DIBH-RT for breast cancer. Data was analysed with reflexive thematical analysis. RESULTS: Twenty-two patients were interviewed with five key themes identified: (1) informational needs, (2) care needs, (3) autonomy, (4) DIBH performance influencers and (5) other centredness. Recommendations were derived from these themes to improve future treatments of DIBH patients. These recommendations revolved around improvements to education, patient-centred care and strategies to improve self-efficacy with breath holding. CONCLUSION: Patients offer a wealth of knowledge regarding their lived experiences with treatment which can enhance future patients' experiences if incorporated into their education and care. Eliciting patients' views of their DIBH-RT treatment highlighted the need to improve patient self-efficacy with DIBH through familiarity with their planned treatment from new multimedia education, and foster patient care to enhance their experience.

7.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672616

ABSTRACT

BACKGROUND: Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS: We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS: We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS: Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.

8.
Cureus ; 16(2): e54329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496077

ABSTRACT

Fabry disease is a metabolic disorder caused by a deficiency in lysosomal enzymes and is inherited as an X-chromosomal disorder. Patients with Fabry disease have a low incidence of cancer, and reports of malignant tumors, especially in the thoracic region, are rare. In this case report, we describe our experience with radiation therapy following breast-conserving surgery in a patient with left breast cancer and Fabry disease, and we review the existing literature. The patient, a woman in her 40s, required postoperative irradiation for left breast cancer (pT1N0M0). There were several patients with Fabry disease in her family, and the diagnosis of Fabry disease was made five years ago. Cardiac function evaluation revealed no significant abnormalities, but a myocardial biopsy had suggested the presence of Fabry disease. Due to the relatively preserved distance between the heart and the chest wall, the patient received heart-shielded three-dimensional conformal radiation therapy at a dose of 53.2 Gy in 20 fractions, without the use of deep-inspiration breath-hold or intensity-modulated radiotherapy. After treatment was completed, only mild radiation dermatitis was observed. Six months have passed since treatment, and there have been no serious adverse events.

9.
Radiat Oncol ; 19(1): 32, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459580

ABSTRACT

BACKGROUND: Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS: Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION: Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION: Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).


Subject(s)
Heart , Lung Neoplasms , Humans , Breath Holding , Organs at Risk , Lung Neoplasms/radiotherapy , Lung , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Clinical Trials, Phase II as Topic
10.
Clin Transl Radiat Oncol ; 45: 100731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304241

ABSTRACT

Objective: To reduce liver and lung dose during right breast irradiation while maintaining optimal dose to the target volume. This dose reduction has the potential to decrease acute side effects and long-term toxicity. Materials and Methods: 16 patients treated with radiation therapy for localized carcinoma of the right breast were included retrospectively. For the planning CT, each patient was immobilised on an indexed board with the arms placed above the head. CT scans were acquired in free-breathing (FB) as well as with deep inspiration breath hold (DIBH). Both scans were acquired with the same length. Planning target volumes (PTV's) were created with a 5 mm margin from the respective clinical target volumes (CTV's) on both CT datasets. The liver was outlined as scanned. Dose metrics evaluated were as follows: differences in PTV coverage, dose to the liver (max, mean, V90%, V50%, V30%), dose to lung (mean, V20Gy, relative electron density) and dose to heart (Dmax). The p-values were calculated using Wilcoxon signed-rank tests. A p-value was significant when <0.05. Results: Differences in PTV coverage between plans using FB and DIBH were less than 2 %. Maximum liver dose was significantly less using DIBH: 17.5 Gy versus FB: 40.3 Gy (p < 0.001). The volume of the liver receiving 10 % of the dose was significantly less using DIBH with 1.88 cm3 versus 72.2 cm3 under FB (p < 0.001). The absolute volume receiving 20 Gy in the right lung was larger using DIBH: 291 cm3 versus 230 cm3 under FB (p < 0.001) and the relative volume of lung receiving dose greater than 20 Gy was smaller with DIBH: 11.5 % versus 14 % in FB (p = 0.007). The relative electron density of lung was significantly less with DIBH: 0.59 versus 0.62 with FB, (p < 0.001). This suggests that the lung receives less dose due to its lower density when using DIBH. Conclusion: Radiation of the right breast using DIBH spares liver and lung tissue significantly and thus carries the potential of best practice for right sided breast cancer.

11.
Cancers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398081

ABSTRACT

Hodgkin lymphomas are radiosensitive and curable tumors that often involve the mediastinum. However, the application of radiation therapy to the mediastinum is associated with late effects including cardiac and pulmonary toxicities and secondary cancers. The adoption of conformal IMRT and deep inspiration breath- hold (DIBH) can reduce the dose to healthy normal tissues (lungs, heart and breast). We compared the dosimetry of organs at risk (OARs) using different IMRT techniques for two breathing conditions, i.e., deep inspiration breath hold (DIBH) and free breathing. Twenty-three patients with early-stage mediastinal Hodgkin lymphomas were accrued in the prospective study. The patients were given treatment plans which utilized full arc volumetric modulated arc therapy (F-VMAT), Butterfly VMAT (B-VMAT), and fixed field IMRT (FF-IMRT) techniques for both DIBH and free breathing methods, respectively. All the plans were optimized to deliver 95% of the prescription dose which was 25.2 Gy to 95% of the PTV volume. The mean dose and standard error of the mean for each OAR, conformity index (CI), and homogeneity index (HI) for the target using the three planning techniques were calculated and compared using Student's t-test for parametric data and Wilcoxon signed-rank test for non-parametric data. The HI and CI of the target was not compromised using the DIBH technique for mediastinal lymphomas. The mean values of CI and HI for both DIBH and FB were comparable. The mean heart doses were reduced by 2.1 Gy, 2.54 Gy, and 2.38 Gy in DIBH compared to FB for the F-VMAT, B-VMAT, and IMRT techniques, respectively. There was a significant reduction in V5Gy, V10Gy, and V15Gy to the heart (p < 0.005) with DIBH. DIBH reduced the mean dose to the total lung by 1.19 Gy, 1.47 Gy, and 1.3 Gy, respectively. Among the 14 female patients, there was a reduction in the mean right breast dose with DIBH compared to FB (4.47 Gy vs. 3.63 Gy, p = 0.004). DIBH results in lower heart, lung, and breast doses than free breathing in mediastinal Hodgkin Lymphoma. Among the different IMRT techniques, FF-IMRT, B-VMAT, and F-VMAT showed similar PTV coverage, with similar conformity and homogeneity indices. However, the time taken for FF-IMRT was much longer than for the F-VMAT and B-VMAT techniques for both breathing methods. B-VMAT and F-VMAT emerged as the optimal planning techniques able to achieve the best target coverage and lower doses to the OARs, with less time required to deliver the prescribed dose.

12.
Cureus ; 16(1): e53045, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38410321

ABSTRACT

Background Hiccups are a common physiologic reflex resulting from intermittent and involuntary spasmodic contraction of the diaphragm and intercostal muscles. While most cases are self-limited, lasting less than 48 hours, rare pathologies may result in prolonged symptoms. Hiccups can be disruptive and uncomfortable, leading many to seek management strategies using common home remedies. Few methods for terminating hiccups have been published in the scientific literature. We report the efficacy of the Hiccup relief using Active Prolonged Inspiration (HAPI) technique, which combines phrenic and vagal nerve stimulation with transient hypercapnia for hiccup relief. Methods Twenty patients with self-limited hiccups and one patient with prolonged hiccups were successful in eliminating hiccups using HAPI. In this method, patients are instructed to inspire maximally. Once at the peak of inspiration, they continue to attempt to inspire with an open glottis for a total of 30 seconds. This is followed by a slow expiration and resumption of normal respiration. Results In all cases, patients reported immediate hiccup relief. Conclusion These findings suggest the HAPI technique is a simple and viable method for hiccup relief. Further studies are needed to validate effectiveness.

13.
J Appl Clin Med Phys ; 25(6): e14271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38273673

ABSTRACT

PURPOSE: The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS: The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS: The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION: With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.


Subject(s)
Breath Holding , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy Setup Errors , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Unilateral Breast Neoplasms , Humans , Female , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Unilateral Breast Neoplasms/radiotherapy , Radiotherapy Setup Errors/prevention & control , Radiotherapy, Image-Guided/methods , Organs at Risk/radiation effects , Middle Aged , Breast Neoplasms/radiotherapy , Prognosis
14.
Radiol Oncol ; 57(4): 530-537, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38038420

ABSTRACT

BACKGROUND: Cardioprotection is valued in radiotherapy for patients with left-sided breast cancer. Deep inspiration breath-hold (DIBH) technique can achieve cardioprotection well. However, during DIBH, the extent to which the heart enters the radiation field is affected by the movement of the thorax and diaphragm. The aim of this study was to analyze the correlation between the maximum distance of the heart entering the field (maximum heart distance, MHD) and thoracic diameter changes and diaphragmatic descent in left-sided breast cancer patients during DIBH. PATIENTS AND METHODS: Ninety-eight patients with left-sided breast cancer were included in this retrospective study. They performed simulation in Sentinel-guided DIBH, and two sets of CT images were collected under both free breathing (FB) and DIBH, and diaphragm positions, anteroposterior thoracic diameter (ATD), transverse thoracic diameter (TTD), gating window level (GWL), and MHD were measured, and the change (Δ) of each parameter in DIBH relative to that in FB were calculated. Pearson or Spearman test were used to analyze the correlation between ΔMHD and the changes in other parameters. RESULTS: For all patients with DIBH, the average of ΔMHD was -8.3 mm, and the average of ΔATD and ΔTTD were 11.0 and 8.6 mm, and the median of both left diaphragmatic descent (LDD) and right diaphragmatic descent (RDD) were 35.0 mm, and the median of GWL was 11.1 mm. The correlation coefficients between MHD decrease (ΔMHD) and LDD, RDD, and ΔTTD were -0.430 (p = 0.000), -0.592 (p = 0.000) and 0.208 (p = 0.040), respectively, but not significantly correlated with ΔATD or GWL. CONCLUSIONS: The MHD decrease showed a moderate correlation with diaphragmatic descent In Sentinel-guided DIBH for patients with left-sided breast cancer, while there was a weak or no correlation with thoracic diameter changes or GWL. Abdominal breathing can lower diaphragm more and may be more beneficial to the heart stay away from tangential field.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Diaphragm/diagnostic imaging , Breath Holding , Radiotherapy Dosage , Unilateral Breast Neoplasms/diagnostic imaging , Unilateral Breast Neoplasms/radiotherapy , Retrospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Thorax
15.
Cureus ; 15(10): e47047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38021774

ABSTRACT

Background Deep inspiration breath-hold (DIBH) has been established as a standard technique to reduce cardiac dose. The part of the heart exposed to radiation can be significantly decreased using the DIBH technique during tangential left-sided breast cancer (LSBC) irradiation. Aim The objective of this study was to investigate the intra-fraction breath-hold stability and inter-fraction consistency of patient breath-hold against the threshold as a function of air volumes in the setting of active breathing coordinator (ABC)-based DIBH (ABC-DIBH) treatment to LSBC. Methods A total of 34 patients treated with external beam radiation therapy (EBRT) to the left breast using the ABC-DIBH device were included. The frequency of breath-holds per fraction and the entire course of treatment along with the total treatment time was evaluated for all patients. A prescription dose of either 200 cGy (conventional) or 267 cGy (hypofractionation) was administered during 649 fractions, resulting in a total of 4,601 breath-hold measurements being evaluated. The amplitude of deviation in terms of air volumes between the baseline threshold and the patient-specific measurement (during each breath-hold) per fraction was used to define the DIBH stability. Likewise, the consistency of the breathing amplitudes was used to define the compliance of patient breath-holds throughout the entire treatment period. Positional accuracy was evaluated using orthogonal (portal) images. Results The average number of breath-holds measured over the entire course of treatment for each patient was 144 inspirations (58-351). Similarly, the average number of breath-holds for each fraction during the course of treatment was 11 inspirations (7-21), which included setup imaging and treatment. The total number of breath-holds reduced significantly (p-value < 0.05) with hypofractionation (104 inspirations; range 58-170) as compared to conventional fractionation (145 inspirations; 58-351). The average breath-hold threshold in terms of air volume was 1.41 L (0.6-2.1 L) for all patients. The total treatment time reduced significantly after the third fraction (p-value < 0.05). The average deviation between the measured and baseline threshold breath-holds during the course of treatment was 0.5 L/sec (0.12-1.32 L/sec). The consistency of the breathing amplitudes were maintained within ±0.05 L during the entire treatment for all patients. The average translational shifts measured during setup were 0.28 cm ± 0.3 cm, 0.38 cm ± 0.4 cm, and 0.21 cm ± 0.3 cm in the lateral, longitudinal, and vertical directions, respectively. Conclusion The study has demonstrated the variations in intra-fraction breath-hold stability and inter-fraction breath-hold consistency in terms of air volumes for patients who were treated for LSBC. The frequency of breath-holds was observed to be higher with increased total treatment time for the first few fractions and reduced over the course of treatment.

16.
Front Oncol ; 13: 1145332, 2023.
Article in English | MEDLINE | ID: mdl-37795446

ABSTRACT

Objective: To explore the advantages of dosimetry and the treatment efficiency of tangent-arc technology in deep inspiration breath-hold radiotherapy for breast cancer. Methods: Forty patients with left-sided breast cancer who were treated in our hospital from May 2020 to June 2021 were randomly selected and divided into two groups. The first group's plan was a continuous semi-arc that started at 145° ( ± 5°) and stopped at 325° ( ± 5°). The other group's plan, defined as the tangent-arc plan, had two arcs: the first arc started at 145° ( ± 5°) and stopped at 85° ( ± 5°), and the second arc started at 25° ( ± 5°) and stopped at 325° ( ± 5°). We compared the target dose, dose in organs at risk (OARs), and treatment time between the two groups. Results: The target dose was similar between the continuous semiarc and tangent-arc groups. The V5 of the right lung was significantly different between the two groups (Dif 5.52, 95% confidence interval 1.92-9.13, t=3.10, P=0.004), with the patients in the continuous semi-arc and tangent-arc groups having lung V5 values of (9.16 ± 1.62)%, and (3.64 ± 0.73)%, respectively. The maximum dose to the spinal cord was (1835.88 ± 222.17) cGy in the continuous semi-arc group and (599.42 ± 153.91) cGy in the tangent-arc group, yielding a significant difference between the two groups (Dif 1236.46, 95% confidence interval 689.32-1783.6, t=4.57, P<0.001). The treatment times was (311.70 ± 60.45) s for patients in the continuous semi-arc group and (254.66 ± 40.73) s for patients in the tangent-arc group, and there was a significant difference in the mean number of treatment times between the two groups (Dif 57.04, 95% confidence interval 24.05-90.03, t=3.5, P=0.001). Conclusion: Both the continuous semi-arc and tangent-arc plans met the clinical prescription dose requirements. The OARs received less radiation with the tangent-arc plan than the continuous semi-arc plan, especially for the lung (measured as V5) and the spinal cord (measured as the maximum dose). Tangent-arc plan took significantly less time than the continuous semi-arc, which can greatly improve treatment efficiency. Therefore, tangent-arc plans are superior continuous semi-arc plans for all cases.

17.
Phys Imaging Radiat Oncol ; 27: 100455, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37720462

ABSTRACT

Background and purpose: Spirometry induced deep-inspiration-breath-hold (DIBH) reduces intrafractional motion during upper abdominal stereotactic body radiotherapy (SBRT). The aim of this prospective study was to evaluate whether surface scanning (SGRT) is an adequate surrogate for monitoring residual internal motion during DIBH. Residual motion detected by SGRT was compared with experimental 4D-ultrasound (US) and an internal motion detection benchmark (diaphragm-dome-position in kV cone-beam computed tomography (CBCT) projections). Materials and methods: Intrafractional monitoring was performed with SGRT and US in 460 DIBHs of 12 patients. Residual motion detected by all modalities (SGRT (anterior-posterior (AP)), US (AP, craniocaudal (CC)) and CBCT (CC)) was analyzed. Agreement analysis included Wilcoxon signed rank test, Maloney and Rastogi's test, Pearson's correlation coefficient (PCC) and interclass correlation coefficient (ICC). Results: Interquartile range was 0.7 mm (US(AP)), 0.8 mm (US(CC)), 0.9 mm (SGRT) and 0.8 mm (CBCT). SGRT(AP) vs. CBCT(CC) and US(CC) vs. CBCT(CC) showed comparable agreement (PCCs 0.53 and 0.52, ICCs 0.51 and 0.49) with slightly higher precision of CBCT(CC). Most agreement was observed for SGRT(AP) vs. US(AP) with largest PCC (0.61) and ICC (0.60), least agreement for SGRT(AP) vs. US(CC) with smallest PCC (0.44) and ICC (0.42). Conclusions: Residual motion detected during spirometry induced DIBH is small. SGRT alone is no sufficient surrogate for residual internal motion in all patients as some high velocity motion could not be detected. Observed patient-specific residual errors may require individualized PTV-margins.

18.
Curr Oncol ; 30(8): 7412-7424, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37623018

ABSTRACT

Deep inspiration breath-hold (DIBH) is an excellent technique to reduce the incidental radiation received by the heart during radiotherapy in patients with breast cancer. However, DIBH is costly and time-consuming for patients and radiotherapy staff. In Asian countries, the use of DIBH is restricted due to the limited number of patients with a high mean heart dose (MHD) and the shortage of radiotherapy personnel and equipment compared to that in the USA. This study aimed to develop, evaluate, and compare the performance of ten machine learning algorithms for predicting MHD using a patient's body mass index and single-slice CT parameters to identify patients who may not require DIBH. Machine learning models were built and tested using a dataset containing 207 patients with left-sided breast cancer who were treated with field-in-field radiotherapy with free breathing. The average MHD was 251 cGy. Stratified repeated four-fold cross-validation was used to build models using 165 training data. The models were compared internally using their average performance metrics: F2 score, AUC, recall, accuracy, Cohen's kappa, and Matthews correlation coefficient. The final performance evaluation for each model was further externally analyzed using 42 unseen test data. The performance of each model was evaluated as a binary classifier by setting the cut-off value of MHD ≥ 300 cGy. The deep neural network (DNN) achieved the highest F2 score (78.9%). Most models successfully classified all patients with high MHD as true positive. This study indicates that the ten models, especially the DNN, might have the potential to identify patients who may not require DIBH.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Unilateral Breast Neoplasms/diagnostic imaging , Unilateral Breast Neoplasms/radiotherapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Body Mass Index , Machine Learning , Tomography, X-Ray Computed
19.
J Appl Clin Med Phys ; 24(11): e14116, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37538022

ABSTRACT

Personalized precision irradiation of patients with left-sided breast cancer is possible by examining the setup errors of 3- and 4-mm gated window widths for those treated with deep inspiration breath-hold (DIBH) treatment. An observational study was performed via a retrospective analysis of 250 cone-beam computed tomography (CBCT) images of 60 left-breast cancer patients who underwent whole-breast radiotherapy with the DIBH technique between January 2021 and 2022 at our hospital. Among them, 30 patients had a gated window width of 3 mm, while the remaining 30 had a gated window width of 4 mm; both groups received radiotherapy using DIBH technology. All patients underwent CBCT scans once a week, and the setup errors in the left-right (x-axis), inferior-superior (y-axis), and anterior-posterior (z-axis) directions were recorded. The clinical-to-planning target volume (CTV-PTV) margins of the two gating windows were calculated using established methods. The setup error in the Y direction was 1.69 ± 1.33 mm for the 3-mm - wide gated window and 2.42 ± 3.02 mm for the 4-mm - wide gated window. The two groups had statistically significant differences in the overall mean setup error (Dif 0.7, 95% CI 0.15-1.31, t = 2.48, p= 0.014). The Z-direction setup error was 2.32 ± 2.12 mm for the 3-mm - wide gated window and 3.15 ± 3.34 mm for the 4-mm - wide gated window. The overall mean setup error was statistically significant between the two groups (Dif 0.8, 95% CI 0.13-1.53, t= 2.34, p = 0.020). There was no significant difference in the X-direction setup error (p > 0.05). Therefore, the CTV-PTV margin values for a 3-mm gated window width in the X, Y, and Z directions are 5.51, 5.15, and 7.28 mm, respectively; those for a 4-mm gated window width in the X, Y, and Z directions are 5.52, 8.16, and 10.21 mm, respectively. The setup errors of the 3-mm - wide gating window are smaller than those of the 4-mm - wide gating window in the three dimensions. Therefore, when the patient's respiratory gating window width is reduced, the margin values of CTV-PTV can be reduced to increase the distance between the PTV and the organs at risk (OARs), which ensures adequate space for the dose to decrease, resulting in lower dose exposure to the OARs (heart, lungs, etc.), thus sparing the OARs from further damage. However, some patients with poor pulmonary function or unstable breathing amplitudes must be treated with a slightly larger gating window. Therefore, this study lays a theoretical basis for personalized precision radiotherapy, which can save time and reduce manpower in the delivery of clinical treatment to a certain extent. Another potential benefit of this work is to bring awareness to the potential implications of a slightly larger gating window during treatment without considering the resulting dosimetric impact.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Breath Holding , Retrospective Studies , Breast Neoplasms/radiotherapy , Tomography, X-Ray Computed/methods , Respiration , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Unilateral Breast Neoplasms/radiotherapy
20.
Med Dosim ; 48(4): 299-303, 2023.
Article in English | MEDLINE | ID: mdl-37648622

ABSTRACT

The purpose of this study was to investigate the impact of deep inspiration breath hold (DIBH) on the positioning of thoracic structures and provide treatment planning recommendations for internal mammary chain (IMC) irradiation in breast cancer patients. Thirty-two breast cancer patients from our database underwent both DIBH and free breathing (FB) treatment planning. Contouring of the axillary lymph node clinical target volumes (CTVs: level I, II, III, IV, and IMC according to ESTRO), the internal mammary artery (IMA), the heart, and the left anterior descending artery (LAD) was performed. The following were then analyzed: the distance between the IMA and the heart, the craniocaudal distance in which IMC-CTV and heart coexist, the craniocaudal distance between the lower end of the of level III and IV and the upper end of the heart. Several significant geometric differences were observed between DIBH and FB that explain the efficacy of the DIBH for regional nodal irradiation. In >80% of patients the cranial origin of the LAD lies below the lower edge of the IMC-CTV in DIBH. In addition the slices in which the heart/LAD and IMC-CTV coexist decrease during DIBH. The IMA-heart distance is significantly larger in DIBH. Also the craniocaudal distance between the lower border of the CTV level III and IV and the upper border of the heart is larger in DIBH. The observed mechanisms during DIBH contribute significantly to the dose reduction in regional nodal irradiation. To further enhance the benefits of DIBH for the irradiation of the IMC-CTV, it is recommended to implement steep dose gradients in the caudal plane.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Breast Neoplasms/radiotherapy , Breath Holding , Radiotherapy Dosage , Unilateral Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Organs at Risk/radiation effects , Heart/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL