Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 292: 133506, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34995627

ABSTRACT

Acidimicrobiaceae sp. strain A6 (A6), is an anaerobic autotrophic bacterium capable of oxidizing ammonium (NH4+) while reducing ferric iron and is also able to defluorinate PFAS under these growth conditions. A6 is exoelectrogenic and can grow in microbial electrolysis cells (MECs) by using the anode as the electron acceptor in lieu of ferric iron. Therefore, cultures of A6 amended with perfluorooctanoic acid (PFOA) were incubated in MECs to investigate its ability to defluorinate PFAS in such reactors. Results show a significant decrease in PFOA concentration after 18 days of operation, while producing current and removing NH4+. The buildup of fluoride and shorter chain perfluorinated products was detected only in MECs with applied potential, active A6, and amended with PFOA, confirming the biodegradation of PFOA in these systems. This work sets the stage for further studies on the application of A6-based per- and polyfluorinated alkyl substances (PFAS) bioremediation in microbial electrochemical systems for water treatment.


Subject(s)
Fluorocarbons , Biodegradation, Environmental , Caprylates , Electrolysis
2.
Chemosphere ; 117: 345-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25150686

ABSTRACT

The zero-valent iron (ZVI) mediated degradation of the antibiotic ciprofloxacin (CIP) was studied under oxic condition. Operational parameters such as ZVI concentration and initial pH value were evaluated. Increase of the ZVI concentration from 1 to 5gL(-1) resulted in a sharp increase of the observed pseudo-first order rate constant of CIP degradation, reaching a plateau at around 10 g L(-1). The contribution of adsorption to the overall removal of CIP and dissolved organic carbon (DOC) was evaluated after a procedure of acidification to pH 2.5 with sulfuric acid and sonication for 2 min. Adsorption increased as pH increased, while degradation decreased, showing that adsorption is not important for degradation. Contribution of adsorption was much more important for DOC removal than for CIP. Degradation of CIP resulted in partial defluorination since the fluoride measured corresponded to 34% of the theoretical value after 120 min of reaction. Analysis by liquid chromatography coupled to mass spectrometry showed the presence of products of hydroxylation on both piperazine and quinolonic rings generating fluorinated and defluorinated compounds as well as a product of the piperazine ring cleavage.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Iron/chemistry , Adsorption , Chromatography, High Pressure Liquid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL