Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 802
Filter
1.
Cell Rep ; 43(10): 114797, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39352808

ABSTRACT

Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.

2.
Front Neurosci ; 18: 1385488, 2024.
Article in English | MEDLINE | ID: mdl-39238929

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects various regions of the brain. Repetitive transcranial magnetic stimulation (rTMS) is a safe and non-invasive method utilized for stimulating different brain areas. Our objective is to alleviate ASD symptoms using high-frequency rTMS (HF-rTMS) in a rat model of ASD induced by valproic acid (VPA). Methods: In this investigation, we applied HF-rTMS for ASD treatment, focusing on the hippocampus. Behavioral assessments encompassed core ASD behaviors, as well as memory and recognition tests, alongside evaluations of anxiety and stress coping strategies. Additionally, we analyzed oxidative stress and a related inflammation marker, as well as other biochemical components. We assessed brain-derived neurotrophic factor (BDNF), Microtubule-associated protein-2 (MAP-2), and synaptophysin (SYN). Finally, we examined dendritic spine density in the CA1 area of the hippocampus. Results: The results demonstrated that HF-rTMS successfully mitigated ASD symptoms, reducing oxidative stress and improving various biochemical factors, along with an increase in dendritic spine density. Discussion: Collectively, our data suggests that HF-rTMS may effectively alleviate ASD symptoms. These findings could be valuable in clinical research and contribute to a better understanding of the mechanisms underlying ASD.

3.
J Physiol ; 602(19): 5061-5081, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39231098

ABSTRACT

Hyperreflexia associated with spasticity is a prevalent neurological condition characterized by excessive and exaggerated reflex responses to stimuli. Hyperreflexia can be caused by several diseases including multiple sclerosis, stroke and spinal cord injury (SCI). Although we have previously identified the contribution of the RAC1-PAK1 pathway underlying spinal hyperreflexia with SCI-induced spasticity, a feasible druggable target has not been validated. To assess the utility of targeting PAK1 to attenuate H-reflex hyperexcitability, we administered Romidepsin, a clinically available PAK1 inhibitor, in Thy1-YFP reporter mice. We performed longitudinal EMG studies with a study design that allowed us to assess pathological H-reflex changes and drug intervention effects over time, before and after contusive SCI. As expected, our results show a significant loss of rate-dependent depression - an indication of hyperreflexia and spasticity - 1 month following SCI as compared with baseline, uninjured controls (or before injury). Romidepsin treatment reduced signs of hyperreflexia in comparison with control cohorts and in pre- and post-drug intervention in SCI animals. Neuroanatomical study further confirmed drug response, as romidepsin treatment also reduced the presence of SCI-induced dendritic spine dysgenesis on α-motor neurons. Taken together, our findings extend previous work demonstrating the utility of targeting PAK1 activity in SCI-induced spasticity and support the novel use of romidepsin as an effective tool for managing spasticity. KEY POINTS: PAK1 plays a role in contributing to the development of spinal cord injury (SCI)-induced spasticity by contributing to dendritic spine dysgenesis. In this study, we explored the preclinical utility of inhibiting PAK1 to reduce spasticity and dendritic spine dysgenesis in an SCI mouse model. Romidepsin is a PAK1 inhibitor approved in the US in 2009 for the treatment of cutaneous T-cell lymphoma. Here we show that romidepsin treatment after SCI reduced SCI-induced H-reflex hyperexcitability and abnormal α-motor neuron spine morphology. This study provides compelling evidence that romidepsin may be a promising therapeutic approach for attenuating SCI-induced spasticity.


Subject(s)
Depsipeptides , H-Reflex , Spinal Cord Injuries , p21-Activated Kinases , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Depsipeptides/pharmacology , Mice , H-Reflex/drug effects , Female , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Muscle Spasticity/physiopathology , Mice, Inbred C57BL , Motor Neurons/drug effects , Motor Neurons/physiology , Male
4.
Front Pharmacol ; 15: 1455812, 2024.
Article in English | MEDLINE | ID: mdl-39286633

ABSTRACT

Autism Spectrum Disorder (ASD) is a developmental condition characterized by core symptoms including social difficulties, repetitive behaviors, and sensory abnormalities. Aberrant morphology of dendritic spines within the cortex has been documented in genetic disorders associated with ASD and ASD-like traits. We hypothesized that compounds that ameliorate abnormalities in spine dynamics might have the potential to ameliorate core symptoms of ASD. Because the morphology of the spine is influenced by signal inputs from other neurons and various molecular interactions, conventional single-molecule targeted drug discovery methods may not suffice in identifying compounds capable of ameliorating spine morphology abnormalities. In this study, we focused on spine phenotypes in the cortex using BTBR T + Itpr3 tf /J (BTBR) mice, which have been used as a model for idiopathic ASD in various studies. We established an in vitro compound screening system using primary cultured neurons from BTBR mice to faithfully represent the spine phenotype. The compound library mainly comprised substances with known target molecules and established safety profiles, including those approved or validated through human safety studies. Following screening of this specialized library containing 181 compounds, we identified 15 confirmed hit compounds. The molecular targets of these hit compounds were largely focused on the 5-hydroxytryptamine receptor (5-HTR). Furthermore, both 5-HT1AR agonist and 5-HT3R antagonist were common functional profiles in hit compounds. Vortioxetine, possessing dual attributes as a 5-HT1AR agonist and 5-HT3R antagonist, was administered to BTBR mice once daily for a period of 7 days. This intervention not only ameliorated their spine phenotype but also alleviated their social behavior abnormality. These results of vortioxetine supports the usefulness of a spine phenotype-based assay system as a potent drug discovery platform targeting ASD core symptoms.

5.
F1000Res ; 13: 176, 2024.
Article in English | MEDLINE | ID: mdl-39318716

ABSTRACT

Background: Dendritic spines are tiny protrusions found along the dendrites of neurons, and their number is a measure of the density of synaptic connections. Altered density and morphology is observed in several pathologies, and spine formation as well as morphological changes correlate with learning and memory. The detection of spines in microscopy images and the analysis of their morphology is therefore a prerequisite for many studies. We have developed a new open-source, freely available, plugin for ImageJ/FIJI, called Spot Spine, that allows detection and morphological measurements of spines in three dimensional images. Method: Local maxima are detected in spine heads, and the intensity distribution around the local maximum is computed to perform the segmentation of each spine head. Spine necks are then traced from the spine head to the dendrite. Several parameters can be set to optimize detection and segmentation, and manual correction gives further control over the result of the process. Results: The plugin allows the analysis of images of dendrites obtained with various labeling and imaging methods. Quantitative measurements are retrieved including spine head volume and surface, and neck length. Conclusion: The plugin and instructions for use are available at https://imagej.net/plugins/spot-spine.


Subject(s)
Dendritic Spines , Imaging, Three-Dimensional , Software , Imaging, Three-Dimensional/methods , Animals
6.
Methods Mol Biol ; 2831: 81-95, 2024.
Article in English | MEDLINE | ID: mdl-39134845

ABSTRACT

During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.


Subject(s)
Neurons , Animals , Mice , Neurons/cytology , Neurons/metabolism , Electroporation/methods , Microscopy, Fluorescence, Multiphoton/methods , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/cytology , Female , Cerebral Cortex/cytology , Dendrites/metabolism
7.
Methods Mol Biol ; 2831: 133-143, 2024.
Article in English | MEDLINE | ID: mdl-39134848

ABSTRACT

The molecular mechanisms underlying neurite formation include multiple crosstalk between pathways such as membrane trafficking, intracellular signaling, and actin cytoskeletal rearrangement. To study the proteins involved in such complex pathways, we present a detailed workflow of the sample preparation for mass spectrometry-based proteomics and data analysis. We have also included steps to perform label-free quantification of proteins that will help researchers quantify changes in the expression levels of key regulators of neuronal morphogenesis on a global scale.


Subject(s)
Neurites , Proteomics , Proteomics/methods , Neurites/metabolism , Animals , Humans , Mass Spectrometry/methods , Proteome/metabolism , Proteome/analysis , Chromatography, Liquid/methods
8.
Methods Mol Biol ; 2831: 209-217, 2024.
Article in English | MEDLINE | ID: mdl-39134852

ABSTRACT

Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.


Subject(s)
Dendritic Spines , Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence, Multiphoton , Neuronal Plasticity , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Dendritic Spines/physiology , Neuronal Plasticity/physiology , Animals , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence, Multiphoton/methods , Synapses/metabolism , Synapses/physiology , Mice , Biosensing Techniques/methods
9.
J Neurosci ; 44(37)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39134419

ABSTRACT

Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca2+ influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca2+ influx promote increases in both synaptic strength and dendritic spine size through activation of Ca2+-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca2+ influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca2+-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-ß (Aß) may impair learning and memory through biasing NMDAR Ca2+ signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aß-mediated impairment of NMDAR synaptic Ca2+ influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aß acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca2+ influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aß-mediated synaptic dysfunction.


Subject(s)
A Kinase Anchor Proteins , Amyloid beta-Peptides , Calcineurin , Dendritic Spines , Receptors, Metabotropic Glutamate , Receptors, N-Methyl-D-Aspartate , Signal Transduction , Animals , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Dendritic Spines/metabolism , Calcineurin/metabolism , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Male , Female , Amyloid beta-Peptides/metabolism , Signal Transduction/physiology , Mice, Inbred C57BL , Mice, Transgenic , Long-Term Synaptic Depression/physiology , Hippocampus/metabolism , Hippocampus/pathology
10.
J Neurosci ; 44(39)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39164108

ABSTRACT

Communication in the form of nonverbal, social vocalization, or crying is evolutionary conserved in mammals and is impaired early in human infants that are later diagnosed with autism spectrum disorder (ASD). Defects in infant vocalization have been proposed as an early sign of ASD that may exacerbate ASD development. However, the neural mechanisms associated with early communicative deficits in ASD are not known. Here, we expressed a constitutively active mutant of Rheb (RhebS16H), which is known to upregulate two ASD core pathways, mTOR complex 1 (mTORC1) and ERK1/2, in Layer (L) 2/3 pyramidal neurons of the neocortex of mice of either sex. We found that cellular mosaic expression of RhebS16H in L2/3 pyramidal neurons altered the production of isolation calls from neonatal mice. This was accompanied by an expected misplacement of neurons and dendrite overgrowth, along with an unexpected increase in spine density and length, which was associated with increased excitatory synaptic activity. This contrasted with the known decrease in spine density in RhebS16H neurons of 1-month-old mice. Reducing the levels of the actin cross-linking and adaptor protein filamin A (FLNA), known to be increased downstream of ERK1/2, attenuated dendrite overgrowth and fully restored spine properties, synaptic connectivity, and the production of pup isolation calls. These findings suggest that upper-layer cortical pyramidal neurons contribute to communicative deficits in a condition known to affect two core ASD pathways and that these mechanisms are regulated by FLNA.


Subject(s)
Autism Spectrum Disorder , Filamins , Pyramidal Cells , Animals , Female , Male , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Cerebral Cortex/metabolism , Filamins/metabolism , Filamins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mosaicism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Synapses/metabolism , Synapses/physiology , Vocalization, Animal/physiology
11.
Front Aging Neurosci ; 16: 1421900, 2024.
Article in English | MEDLINE | ID: mdl-39040546

ABSTRACT

Background: Finding successful therapies for individuals with Alzheimer's disease (AD) remains an ongoing challenge. One contributing factor is that the mouse models commonly used in preclinical research primarily mimic the familial form of AD, whereas the vast majority of human cases are sporadic. Accordingly, for a sporadic mouse model of AD, incorporating the multifactorial aspects of the disease is of utmost importance. Methods: In the current study, we exposed humanized Aß knock-in mice (hAß-KI) to weekly low-dose lipopolysaccharide (LPS) injections until 24 weeks of age and compared the development of AD pathologies to the familial AD mouse model known as the J20 mice. Results: At the early time point of 24 weeks, hAß-KI mice and J20 mice exhibited spatial memory impairments in the Barnes maze. Strikingly, both hAß-KI mice and J20 mice showed significant loss of dendritic spines when compared to WT controls, despite the absence of Aß plaques in hAß-KI mice at 24 weeks of age. Glial cell numbers remained unchanged in hAß-KI mice compared to WT, and LPS exposure in hAß-KI mice did not result in memory deficits and failed to exacerbate any other examined AD pathology. Conclusion: The study highlights the potential of hAß-KI mice as a model for sporadic AD, demonstrating early cognitive deficits and synaptic alterations despite no evidence of Aß plaque formation. These findings underscore the importance of considering multifactorial influences in sporadic AD pathogenesis and the need for innovative models to advance our understanding and treatment strategies for this complex disease.

12.
Front Neurosci ; 18: 1420309, 2024.
Article in English | MEDLINE | ID: mdl-39040633

ABSTRACT

Background: Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4ßδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods: We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4ßδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results: Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 µm; post-pubertal: 0.81 ± 0.14 spines/10 µm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4ßδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions: These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.

13.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994979

ABSTRACT

HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.


Subject(s)
Brain , HIV Infections , HIV-1 , Humans , Brain/virology , Brain/pathology , HIV-1/physiology , HIV Infections/virology , HIV Infections/pathology , Adult , Neurons/virology , Neurons/metabolism , Macrophages/virology , Macrophages/metabolism , Astrocytes/virology , CD4-Positive T-Lymphocytes/virology , Tissue Culture Techniques
14.
Anim Cells Syst (Seoul) ; 28(1): 294-302, 2024.
Article in English | MEDLINE | ID: mdl-38832126

ABSTRACT

The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.

15.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826343

ABSTRACT

How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to pre-plasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.

16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167319, 2024 10.
Article in English | MEDLINE | ID: mdl-38909848

ABSTRACT

The regulation of protein degradation through the ubiquitin-proteasome system is essential for normal brain development, axon growth, synaptic growth and plasticity. The E3 ubiquitin ligase RFWD2 plays a key role in the onset and development of neurological diseases, including the pathogenesis of Alzheimer's disease (AD), but the mechanisms controlling the homeostasis of neuronal synaptic proteins are still poorly understood. Here, we showed that the expression level of RFWD2 gradually decreased with the age of the rats and was negatively correlated with the development of cerebral cortical neurons and dendrites in vivo. RFWD2 was shown to localize to presynaptic terminals and some postsynaptic sides of both excitatory synapses and inhibitory synapses via colocalization with neuronal synaptic proteins (SYN, PSD95, Vglut1 and GAD67). Overexpression of RFWD2 promoted dendrite development and dendritic spine formation and markedly decreased the expression of synaptophysin and PSD95 by reducing the expression of ETV1, ETV4, ETV5 and c-JUN in vitro. Furthermore, the whole-cell membrane slice clamp results showed that RFWD2 overexpression resulted in greater membrane capacitance in neuronal cells, inadequate cell repolarization, and a longer time course for neurons to emit action potentials with decreased excitability. RFWD2 regulates dendritic development and plasticity, dendritic spine formation and synaptic function in rat cerebral cortex neurons by activating the ERK/PEA3/c-Jun pathway via a posttranslational regulatory mechanism and can be used as an efficient treatment target for neurological diseases.


Subject(s)
Cerebral Cortex , Dendritic Spines , Synapses , Ubiquitin-Protein Ligases , Animals , Male , Rats , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dendritic Spines/metabolism , MAP Kinase Signaling System , Neurons/metabolism , Rats, Sprague-Dawley , Synapses/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
17.
J Neurosci ; 44(32)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38942470

ABSTRACT

NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Serine , Signal Transduction , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Male , Female , Serine/metabolism , Serine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Inbred C57BL , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Glutamic Acid/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism
18.
J Neurochem ; 168(9): 2155-2169, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38898681

ABSTRACT

Kelch-like family member 17 (KLHL17), an actin-associated adaptor protein, is linked to neurological disorders, including infantile spasms and autism spectrum disorders. The key morphological feature of Klhl17-deficient neurons is impaired dendritic spine enlargement, resulting in the amplitude of calcium events being increased. Our previous studies have indicated an involvement of F-actin and the spine apparatus in KLHL17-mediated dendritic spine enlargement. Here, we show that KLHL17 further employs different mechanisms to control the expression of two types of glutamate receptors, that is, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate receptors (KARs), to regulate dendritic spine enlargement and calcium influx. We deployed proteomics to reveal that KLHL17 interacts with N-ethylmaleimide-sensitive fusion protein (NSF) in neurons, with this interaction of KLHL17 and NSF enhancing NSF protein levels. Consistent with the function of NSF in regulating the surface expression of AMPAR, Klhl17 deficiency limits the surface expression of AMPAR, but not its total protein levels. The NSF pathway also contributes to synaptic F-actin distribution and the dendritic spine enlargement mediated by KLHL17. KLHL17 is known to act as an adaptor mediating degradation of the KAR subunit GluK2 by the CUL3 ubiquitin ligase complex, and Klhl17 deficiency impairs activity-dependent degradation of GluK2. Herein, we further demonstrate that GluK2 is critical to the increased amplitude of calcium influx in Klhl17-deficient neurons. Moreover, GluK2 is also involved in KLHL17-regulated dendritic spine enlargement. Thus, our study reveals that KLHL17 controls AMPAR and KAR expression via at least two mechanisms, consequently regulating dendritic spine enlargement. The regulatory effects of KLHL17 on these two glutamate receptors likely contribute to neuronal features in patients suffering from certain neurological disorders.


Subject(s)
Dendritic Spines , Receptors, AMPA , Animals , Dendritic Spines/metabolism , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Mice , Receptors, Kainic Acid/metabolism , Receptors, Kainic Acid/genetics , Microfilament Proteins/metabolism , Mice, Knockout , Cells, Cultured , Neurons/metabolism , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Humans , Male
19.
Article in English | MEDLINE | ID: mdl-38901757

ABSTRACT

OBJECTIVE: Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD: Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS: ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION: Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.


Subject(s)
Hippocampus , Animals , Female , Hippocampus/metabolism , Rats , Spatial Memory/physiology , Anorexia/metabolism , Anorexia/physiopathology , Anorexia/pathology , Corticosterone/blood , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Memory Disorders/physiopathology , Memory Disorders/pathology , Rats, Wistar , Receptors, Glucocorticoid/metabolism , Anorexia Nervosa/metabolism , Anorexia Nervosa/physiopathology , Anorexia Nervosa/pathology , Disease Models, Animal
20.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943486

ABSTRACT

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Subject(s)
Dendritic Spines , Dentate Gyrus , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Animals , Dendritic Spines/metabolism , Mice , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Neurons/metabolism , Male , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL