Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters











Publication year range
1.
Small ; : e2400501, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693085

ABSTRACT

Water, being abundant and readily accessible, gains widespread usage as proton source in many catalysis and energy conversion technologies, including applications like reversible protonic ceramic cells (R-PCCs). Revealing the influence of water on the electrode surface and reaction kinetics is critical for further improving their electrochemical performance. Herein, a hydrophilic air-electrode PrBa0.875Cs0.125Co2O5+δ is developed for R-PCC, which demonstrates a remarkable peak power density of 1058 mW cm-2 in fuel cell mode and a current density of 1354 mA cm-2 under 1.3 V in electrolyzing steam at 650 °C. For the first time on R-PCC, surface protons' behavior in response to external voltages is captured using in situ FTIR characterizations. Further, it is shown that contrary to the bulk proton uptake process that is thought to follow hydrogenation reactions and lead to cation reductions. The air-electrode presents enriched surface protons occurring through oxidizing surface cations, as confirmed by depth-profiling XPS results. H/D isotope exchange experiments and subsequent electrochemical characterization analyses reveal that the presence of protons enhances surface reactions. This study fills the knowledge gap between water-containing atmospheres and electrochemical performance by providing insights into the surface properties of the material. These new findings provide guidance for future electrode design and optimization.

2.
ACS Appl Mater Interfaces ; 16(20): 26922-26931, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718823

ABSTRACT

Depth profiling is an essential method to investigate the physical and chemical properties of a solid electrolyte and electrolyte/electrode interface. In conventional depth profiling, various spectroscopic tools such as X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) are utilized to monitor the chemical states along with ion bombardment to etch a sample. Nevertheless, the ion bombardment during depth profiling results in an inevitable systematic error, i.e., the accumulation of mobile ions at the electrolyte/electrode interface, known as the ion pile-up phenomenon. Here, we propose a novel method using bias potential, the substrate-bias method, to prevent the ion pile-up phenomena during depth profiling of a solid electrolyte. When the positive bias potential is applied on the substrate (electrode), the number of accumulating ions at the electrolyte/electrode interface is significantly reduced. The in-depth XPS analysis with the biased electrode reveals not only the suppression of the ion pile-up phenomena but also the altered chemical states at the interfacial region between the electrolyte and electrode depending on the bias. The proposed substrate-bias method can be a good alternative scheme for an efficient yet precise depth profiling technique for a solid electrolyte.

3.
ACS Appl Mater Interfaces ; 16(8): 10908-10915, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363637

ABSTRACT

Solid/solid interfaces between electrodes and electrolytes play an important role in all-solid-state energy devices, while microscopic investigations of the buried interfaces remain challenging. Here, we construct metal|yttria-stabilized zirconia (YSZ)|Au model cells consisting of a metal film cathode (metal (M) = Au, Ni, and Ag), a single crystalline YSZ electrolyte, and a Au film anode, and use quasi in situ X-ray photoelectron spectroscopy depth profiling analysis to investigate the restructuring of buried interfaces between metal cathodes and YSZ. After applying 2.9 V at 500 °C, interfacial Zr4+ ions in the electrolyte are reduced and then interdiffuse with metal cathode overlayers, forming a miscible ZrM alloy interlayer. The interface restructuring degree follows the sequence of Au|YSZ|Au > Ni|YSZ|Au > Ag|YSZ|Au. Meanwhile, surface segregation of Zr on the cathode surface is also observed, whose degree follows the sequence of Ag|YSZ|Au > Ni|YSZ|Au > Au|YSZ|Au. Notably, the strong ZrM alloy formation enhances the interface restructuring but suppresses the Zr surface segregation. This work provides a fundamental understanding of the interfacial reaction at the buried electrode/electrolyte interface.

4.
Appl Radiat Isot ; 206: 111212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340531

ABSTRACT

AlN thin films have been deposited on silicon substrate by vacuum arc discharge technique at different substrate temperatures. The information regarding depth profiling of AlN thin films has been determined by applying both elastic backscattering (EBS) and nuclear reaction analysis (NRA) techniques simultaneously at optimized experimental conditions. Additionally, combined SEM/EDX techniques have been employed to gain further information regarding thickness and composition of the AlN thin films. The Al/N ratio has been determined, while the oxygen content was found to be negligible. The substrate temperature influence on depth profile of AlN thin films as well as densities has been discussed. The advantages of using ion beam analysis techniques have been reviewed.

5.
Small Methods ; 8(3): e2300944, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009726

ABSTRACT

Many metals form nanometer-thin self-passivating oxide layers upon exposure to the atmosphere, which affects a wide range of interfacial properties and shapes the way how metals interact with their environment. Such native oxide layers are commonly analyzed by X-ray photoelectron spectroscopy (XPS), which provides a depth-resolved chemical state and compositional analysis either by ion etching or modeling of the electron escape depths. The latter is commonly used to calculate the average thickness of a native oxide layer. However, the measurement of concentration profiles at the oxide-metal interface remains challenging. Here, a simple and accessible approach for the depth profiling of ultrathin oxide layers within single fixed-angle XPS spectra is proposed. Instead of using only one peak in the spectrum, as is usually the case, all peaks within the energy range of a standard lab device are utilized, thus resembling energy-resolved XPS without the need for a synchrotron. New models that allow the calculation of depth-resolved concentration profiles at the oxide-metal interface are derived and tested, which are also valid for angular- and energy-resolved XPS. The proposed method not only improves the accuracy of earlier approaches but also paves the way for a more holistic understanding of the XPS spectrum.

6.
Materials (Basel) ; 16(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895625

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) has emerged as a powerful analytical method for the elemental mapping and depth profiling of many materials. This review offers insight into the contemporary applications of LIBS for the depth profiling of materials whose elemental composition changes either abruptly (multilayered materials) or continuously (functionally graded or corroded materials). The spectrum of materials is discussed, spanning from laboratory-synthesized model materials to real-world products including materials for fusion reactors, photovoltaic cells, ceramic and galvanic coatings, lithium batteries, historical and archaeological artifacts, and polymeric materials. The nuances of ablation conditions and the resulting crater morphologies, which are instrumental in depth-related studies, are discussed in detail. The challenges of calibration and quantitative profiling using LIBS are also addressed. Finally, the possible directions of the evolution of LIBS applications are commented on.

7.
Polymers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896300

ABSTRACT

Preserving celluloid artifacts is challenging for museums, as this plastic is highly prone to degradation. Frozen, cold, and cool storage solutions are typically recommended for inhibiting the chemical degradation of celluloid. However, they are rarely implemented for three-dimensional celluloid (3D-CN) objects because low temperatures might cause irreversible effects (e.g., microcracking). This work presents the effects of four different storage temperatures (+23 °C, +13 °C, +9 °C, -15 °C) on the preservation of artificially aged 3D-CN mock-ups, aiming at understanding their effectiveness by measuring molecular weight distribution, camphor, and nitrogen contents after storage. Gel permeation chromatography (GPC) results showed that the least loss of camphor content and fewer polymer chain scissions happened at -15 °C, hinting that this temperature was the best for preservation. However, the heterogeneous nature of celluloid alteration, i.e., the development of degradation gradients in thicker 3D-CN objects (>0.5 mm), made it necessary to apply a novel sampling technique, which selectively considers several depths for analyses from the surface to the core (depth profiling). This depth profiling made monitoring the degradation evolution dependent on the storage conditions in the thicker mock-ups possible. This approach was also used for the first time to quantify the polymer chain scission, camphor loss, and denitration of historical artifacts, indicating a dramatic difference in the degradation stage between surface and core. The effectiveness of frozen storage on the chemical stability of 3D-CN after seven months could support museums to consider reducing the storage temperatures to preserve precious artifacts.

8.
J Cancer Res Clin Oncol ; 149(18): 16635-16645, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716922

ABSTRACT

PURPOSE: Microscopic tumor spread beyond the macroscopically visible tumor mass in bone represents a major risk in surgical oncology, where the spatial complexity of bony resection margins cannot be countered with rapid bone analysis techniques. Laser-induced breakdown spectroscopy (LIBS) has recently been introduced as a promising option for rapid bone analysis. The present study aimed to use LIBS-based depth profiling based on electrolyte disturbance tracking to evaluate the detection of microscopic tumor spread in bone. METHODS: After en bloc resection, the tumor-infiltrated mandible section of a patient's segmental mandibulectomy specimen was natively investigated using LIBS. Spectral and electrolytic depth profiles were analyzed across 30 laser shots per laser spot position in healthy bone and at the tumor border. For the histological validation of the lasered positions, the mandibular section was marked with a thin separating disc. RESULTS: Solid calcium (Ca) from hydroxyapatite and soluble Ca from dissolved Ca can be reliably differentiated using LIBS and reflect the natural heterogeneity of healthy bone. Increased potassium (K) emission values in otherwise typically healthy bone spectra are the first spectral signs of tumorous bone invasion. LIBS-based depth profiles at the tumor border region can be used to track tumor-associated changes within the bone with shot accuracy based on the distribution of K. CONCLUSION: Depth profiling using LIBS might enable the detection of microscopic tumor spread in bone. In the future, direct electrolyte tracking using LIBS should be applied to other intraoperative challenges in surgical oncology to advance rapid bone analysis by spectroscopic-optical techniques.


Subject(s)
Mouth Neoplasms , Potassium , Humans , Potassium/analysis , Pilot Projects , Spectrum Analysis/methods , Calcium/analysis , Lasers , Mouth Neoplasms/diagnosis , Mouth Neoplasms/surgery , Electrolytes
9.
Chemosphere ; 338: 139616, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482308

ABSTRACT

The Fischer-Tropsch (F-T) synthesis is recognized for its ability to produce long-chain hydrocarbons. In this study, we aimed to replicate F-T synthesis using electrochemical CO2 reduction and CO reduction reactions on a stainless steel (SS) support with a gold (Au) overlayer. Under CO2-saturated conditions, the presence of Au on the SS surface led to the formation of CH4 and a range of hydrocarbons (CnH2n and CnH2n+2, n = 2-7), while bare SS primarily produced hydrogen. The Au(10 nm)/SS exhibited the highest hydrocarbon production in CO2-saturated phosphate, indicating a synergistic effect at the Au-SS interface. In CO-saturated conditions, bare SS also produced long-chain hydrocarbons, but increasing Au thickness resulted in decreased production due to poor CO adsorption. Hydrocarbons were formed through both direct and indirect CO adsorption pathways. Anderson-Schulz-Flory analysis confirmed surface CO hydrogenation and C-C coupling polymerization following conventional F-T synthesis. The C2 hydrocarbons exhibited distinct behavior compared to C3-5 hydrocarbons, suggesting different reaction pathways. Despite low reduction product levels, our EC method successfully replicated F-T synthesis using the Au/SS electrode, providing valuable insights into C-C coupling mechanisms and electrochemical production of long-chain hydrocarbons. Depth-profiling X-ray photoelectron spectroscopy revealed significant changes in surface elemental compositions before and after EC reduction.


Subject(s)
Carbon Dioxide , Stainless Steel , Stainless Steel/chemistry , Carbon Dioxide/chemistry , Hydrocarbons , Hydrogenation , Hydrogen/chemistry
10.
ACS Appl Mater Interfaces ; 15(29): 35639-35647, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37432865

ABSTRACT

Determination of geometric parameters for thin film materials has always been a critical concern in scientific research. This paper proposes a novel approach for high-resolution and nondestructive measurement of nanoscale film thickness. In this study, the neutron depth profiling (NDP) technique was employed to accurately measure the thickness of nanoscale Cu films, achieving an impressive resolution of up to 1.78 nm/keV. The measurement results exhibited a deviation from the actual thickness of less than 1%, highlighting the accuracy of the proposed method. Additionally, simulations were conducted on graphene samples to demonstrate the applicability of NDP in measuring the thickness of multilayer graphene films. These simulations provide a theoretical foundation for subsequent experimental measurements, further enhancing the validity and practicality of the proposed technique.

11.
ACS Appl Mater Interfaces ; 15(24): 29535-29541, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37278556

ABSTRACT

The wide band gap semiconductor κ-Ga2O3 and its aluminum and indium alloys have been proposed as promising materials for many applications. One of them is the use of inter-sub-band transitions in quantum-well (QW) systems for infrared detectors. Our simulations show that the detection wavelength range of nowadays state of the art GaAs/AlxGa1-xAs quantum-well infrared photodetectors (QWIPs) could be substantially excelled with about 1-100 µm using κ-([Al,In]xGa1-x)2O3, while at the same time being transparent to visible light and therefore insensitive to photon noise due to its wide band gap, demonstrating the application potential of this material system. Our simulations further show that the QWIPs efficiency critically depends on the QW thickness, making a precise control over the thickness during growth and a reliable thickness determination essential. We demonstrate that pulsed laser deposition yields the needed accuracy, by analyzing a series of (InxGa1-x)2O3 QWs with (AlyGa1-y)2O3 barriers with high-resolution X-ray diffraction, X-ray photoelectron spectroscopy (XPS) depth profiling, and transmission electron microscopy (TEM). While the superlattice fringes of high-resolution X-ray diffraction only yield an average combined thickness of the QWs and the barrier and X-ray spectroscopy depth profiling requires elaborated modeling of the XPS signal to accurately determine the thickness of such QWs, TEM is the method of choice when it comes to the determination of QW thicknesses.

12.
Appl Spectrosc ; 77(7): 744-752, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37229660

ABSTRACT

In confocal Raman microscopy, depth profiling is a key application that enables analysis of the structural and chemical composition and size of three-dimensional (3D) transparent objects. However, the precise interpretation of a probed sample's Raman depth profile measurement can be significantly affected by both its size and surrounding objects. This study provides a more comprehensive understanding of the observed optical effects at the interface between polymer spheres and different substrates. Ray- and wave-optical simulations support our results. We derive a correction factor that, depending on the instrumental configuration, allows us to determine the nominal dimensions of the scanned objects more accurately from Raman depth profiles. Our studies support the need for careful consideration when employing depth profiling in confocal Raman microscopy for nondestructive, quantitative tomography of 3D objects.

13.
Sensors (Basel) ; 23(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850795

ABSTRACT

Optical techniques are often inadequate in estimating bruise age since they are not sensitive to the depth of chromophores at the location of the bruise. To address this shortcoming, we used pulsed photothermal radiometry (PPTR) for depth profiling of bruises with two wavelengths, 532 nm (KTP laser) and 1064 nm (Nd:YAG laser). Six volunteers with eight bruises of exactly known and documented times of injury were enrolled in the study. A homogeneous part of the bruise was irradiated first with a 5 ms pulse at 532 nm and then with a 5 ms pulse at 1064 nm. The resulting transient surface temperature change was collected with a fast IR camera. The initial temperature-depth profiles were reconstructed by solving the ill-posed inverse problem using a custom reconstruction algorithm. The PPTR signals and reconstructed initial temperature profiles showed that the 532 nm wavelength probed the shallow skin layers revealing moderate changes during bruise development, while the 1064 nm wavelength provided additional information for severe bruises, in which swelling was present. Our two-wavelength approach has the potential for an improved estimation of the bruise age, especially if combined with modeling of bruise dynamics.


Subject(s)
Contusions , Humans , Lasers , Radiometry , Algorithms , Culture
14.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772122

ABSTRACT

In this study, a new method for the inline measurement of depth profiles on a continuously moving sample with laser-induced breakdown spectroscopy is presented. The ablation profile is generated by ablating the sample with a burst of laser pulses, where the emission spectrum of each laser-induced plasma is analyzed on a spectrometer. A Q-switched Nd:YAG laser at 1064 nm with 10 mJ pulse energy, 6 ns pulse duration and 100 Hz repetition rate was used. The focusing lens for the pulsed laser and a deflection mirror are mounted on a moving stage, which is precisely aligned in height and orientation to the movement of a conveyor belt transporting the sample. The stage speed is actively synchronized to the speed of the moving sample by a wheel encoder to assure that all laser pulses hit the same position at the sample. The feasibility for depth-resolved elemental analysis on moving samples is shown for coatings of electrode foils for lithium-ion batteries. The coating homogeneity was measured at a speed up to 17 m/min. For a 100 µm coating, 10 laser pulses were needed to measure a full depth profile.

15.
ACS Nano ; 16(10): 16221-16233, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36218061

ABSTRACT

Knowledge of the distributions of drugs, metabolites, and drug carriers within cells is a prerequisite for the development of effective disease treatments. Intracellular component distribution may be imaged with high sensitivity and spatial resolution by using a NanoSIMS in the depth profiling mode. Depth correction strategies that capture the effects of differential sputtering without requiring additional measurements could enable producing accurate 3D NanoSIMS depth profiling images of intracellular component distributions. Here we describe an approach for depth correcting 3D NanoSIMS depth profiling images of cells that accounts for differential sputter rates. Our approach uses the secondary ion and secondary electron depth profiling images to reconstruct the cell's morphology at every raster plane. These cell morphology reconstructions are used to adjust the z-positions and heights of the voxels in the component-specific 3D NanoSIMS images. We validated this strategy using AFM topography data and reconstructions created from depth profiling images acquired with focused ion beam-secondary electron microscopy. Good agreement was found for the shapes and relative heights of the reconstructed morphologies. Application of this depth correction strategy to 3D NanoSIMS depth profiling images of a metabolically labeled cell better resolved the transport vesicles, organelles, and organellar membranes containing 18O-cholesterol and 15N-sphingolipids. Accurate 3D NanoSIMS images of intracellular component distributions may now be produced without requiring correlated analyses with separate instruments or the assumption of a constant sputter rate. This will allow visualization of the subcellular distributions of lipids, metabolites, drugs, and nanoparticles in 3D, information pivotal to understanding and treating disease.


Subject(s)
Imaging, Three-Dimensional , Spectrometry, Mass, Secondary Ion , Spectrometry, Mass, Secondary Ion/methods , Imaging, Three-Dimensional/methods , Cholesterol , Sphingolipids , Drug Carriers
16.
Neuroimage ; 263: 119617, 2022 11.
Article in English | MEDLINE | ID: mdl-36084859

ABSTRACT

Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.


Subject(s)
Brain Mapping , Cerebral Cortex , Humans , Cerebral Cortex/diagnostic imaging , Brain Mapping/methods , Myelin Sheath , Brain , Magnetic Resonance Imaging/methods
17.
Small ; 18(46): e2204455, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36180412

ABSTRACT

An all-solid-state battery is a secondary battery that is charged and discharged by the transport of lithium ions between positive and negative electrodes. To fully realize the significant benefits of this battery technology, for example, higher energy densities, faster charging times, and safer operation, it is essential to understand how lithium ions are transported and distributed in the battery during operation. However, as the third lightest element, methods for quantitatively analyzing lithium during operation of an all-solid-state device are limited such that real-time tracking of lithium transport has not yet been demonstrated. Here, the authors report that the transport of lithium ions in an all-solid-state battery is quantitatively tracked in near real time by utilizing a high-intensity thermal neutron source and lithium-6 as a tracer in a thermal neutron-induced nuclear reaction. Furthermore, the authors show that the lithium-ion migration mechanism and pathway through the solid electrolyte can be determined by in-operando tracking. From these results, the authors suggest that the development of all-solid-state batteries has entered a phase where further advances can be carried out while understanding the transport of lithium ions in the batteries.

18.
Anal Chim Acta ; 1227: 340260, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36089305

ABSTRACT

In this work, the capability of linear correlation statistics for chemical mapping by laser-induced breakdown spectroscopy (LIBS) has been studied for the first time for the characterization of samples with compositional changes on surface and in depth. For that purpose, a corrosion layer of varied spread has been caused in brass samples by chemical treatment and afterwards analyzed by LIBS. Correlation depth profiles, two-dimensional (2D) correlation maps and three-dimensional (3D) correlation maps have been generated from LIBS data to contrast the results obtained from treated and non-treated samples and zones. Conventional LIBS maps based on signal intensity have also been generated for comparison. The conclusions of this study demonstrate the capability and benefits of using the linear correlation method for 3D mapping by LIBS of samples with non-uniform composition. In this sense, the proposed methodology has allowed to determine the location of the corroded regions in the analyzed volume, even in the non-treated zones also affected by the byproducts originated from the chemical attack, in contrast to conventional LIBS mapping based on signal representation.


Subject(s)
Lasers , Spectrum Analysis/methods
19.
ACS Sens ; 7(5): 1381-1389, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35584047

ABSTRACT

Sensing of hazardous metals is urgent in many areas (e.g., water pollution and meat products) as heavy metals threaten people's health. Laser-induced breakdown spectroscopy (LIBS), as a rapid, in situ, and multielemental analytical technique, has been widely utilized in rapid hazardous heavy metal sensing. However, loose and water-containing samples (e.g., meat, plant, and soil) are hard to analyze by LIBS directly, and heavy metal depth profiling for bulk samples remains suspenseful. Here, inspired by the Needle, the sword of Arya Stark in Game of Thrones, we propose an insertable, scabbarded, and nanoetched silver (NE-Ag) needle sensor for rapid hazardous element sensing and depth profiling. The NE-Ag needle sensor features a micro-nanostructure surface for inserting into the bulk sample and absorbing hazardous analytes. For accurate elemental depth profiling, we design a stainless-steel scabbard to wrap and protect the NE-Ag needle from pollution (unexpected contaminant absorption) during the needle insertion and extraction process. The results for cadmium (Cd) show that the relative standard deviation equals to 6.7% and the limit of detection reaches 0.8 mg/L (ppm). Furthermore, the correlations (Pearson correlation coefficient) for Cd and chromium (Cr) depth profiling results are no less than 0.96. Furthermore, the total testing time could be less than 1 h. All in all, the insertable and scabbarded NE-Ag needle senor has high potential in rapid hazardous heavy metal depth profiling in different industries.


Subject(s)
Metals, Heavy , Silver , Cadmium , Humans , Lasers , Silver/chemistry , Spectrum Analysis/methods
20.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630698

ABSTRACT

The increased demand for sustainability requires, among others, the development of new materials with enhanced corrosion resistance. Transition metal diborides are exceptional candidates, as they exhibit fascinating mechanical and thermal properties. However, at elevated temperatures and oxidizing atmospheres, their use is limited due to the fact of their inadequate oxidation resistance. Recently, it was found that chromium diboride doped with silicon can overcome this limitation. Further improvement of this protective coating requires detailed knowledge regarding the composition of the forming oxide layer and the change in the composition of the remaining thin film. In this work, an analytical method for the quantitative measurement of depth profiles without using matrix-matched reference materials was developed. Using this approach, based on the recently introduced online-LASIL technique, it was possible to achieve a depth resolution of 240 nm. A further decrease in the ablation rate is possible but demands a more sensitive detection of silicon. Two chromium diboride samples with different Si contents suffering an oxidation treatment were used to demonstrate the capabilities of this technique. The concentration profiles resembled the pathway of the formed oxidation layers as monitored with transmission electron microscopy. The stoichiometry of the oxidation layers differed strongly between the samples, suggesting different processes were taking place. The validity of the LASIL results was cross-checked with several other analytical techniques.

SELECTION OF CITATIONS
SEARCH DETAIL