Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 13(12): e10769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077516

ABSTRACT

Tephroseris helenitis is a perennial herb that experienced a severe decline of species records over the last 120 years in the state of Hessia, Germany. Here, the species is found in humid habitats with moderate temperatures. In this modeling study, we assessed changes in climatic conditions between the periods 1900-1949, 1950-1979, 1980-1999 and 2000-2020 and explored whether these changes can explain the decline of records of T. helenitis. Climatic variables used were monthly precipitation sums, monthly mean, minimum and maximum temperatures, monthly temperature ranges as well as annual precipitation sum and annual mean temperature. For the majority of these variables, changes were significant across periods. Minimum temperatures in March, April and July (Tmin_Mar, Tmin_Apr, Tmin_Jul) best explained species presences and absences in 1900-1949 and 1950-1979. The species shifted its realized niche towards lower Tmin_Mar and narrowed its niche on Tmin_Apr and Tmin_Jul between these two periods. March, April and July are crucial in the life cycle of T. helenitis. Tmin_Mar and Tmin_Apr are related to the induction of flowering through a period of low temperatures (vernalization), and Tmin_Jul is related to seed germination. Documented increasing March and April temperatures as well as autumn and winter temperatures in the past 120 years may imply that vernalization became increasingly unsuccessful for the species and increasing July temperatures may have decreased its germination success. Given the disappearance of its temperature niche (Tmin_Mar, Tmin_Apr, Tmin_Jul) due to ongoing global warming not only in Hessia and Germany, we anticipate that T. helenitis will go extinct in Europe.

2.
Front Plant Sci ; 13: 837831, 2022.
Article in English | MEDLINE | ID: mdl-35845667

ABSTRACT

Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). Among the repressive epigenetic marks, the trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. The deposition of H3K27me3 is mediated by Polycomb Repressive Complex 2 (PRC2). Conversely, the elimination of H3K27me3 is mediated by histone demethylases, Jumonji-C domain-containing protein JMJ30 and its homolog JMJ32. However, the role of JMJ30 and JMJ32 in vernalization is largely unknown. In this study, we found that cold treatment dramatically reduced the expression levels of JMJ30 and did not reduce those of JMJ32. Next, by using the genetic approach, we found that the flowering of jmj30 jmj32 was accelerated under moderate vernalized conditions. Under moderate vernalized conditions, the silencing of FLC occurred more quickly in jmj30 jmj32 than in the wild type. These results suggested that the histone demethylases JMJ30 and JMJ32 brake vernalization through the activation of FLC. Our study suggested that PRC2 and Jumonji histone demethylases act in an opposing manner to regulate flowering time via epigenetic modifications.

3.
Front Plant Sci ; 13: 1093792, 2022.
Article in English | MEDLINE | ID: mdl-36684728

ABSTRACT

Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.

4.
Front Plant Sci ; 12: 634068, 2021.
Article in English | MEDLINE | ID: mdl-33613612

ABSTRACT

Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). The repressive epigenetic mark trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. Interestingly, the deposited H3K27me3 in the FLC locus can be erased by short-term high-temperature treatment. This is referred to as devernalization. In this study, we identified a novel chemical compound, 4-Isoxazolecarboxylic acid, 3,5-dimethyl-2-(4-fluorophenyl)-4-isoxazole carboxylic acid 1-methyl-2-oxoethyl ester named as DEVERNALIZER01 (DVR01), which induces devernalization in Arabidopsis seedlings, by an FLC-luciferase reporter-based high-throughput screening assay. DVR01 decreased the amount of H3K27me3 in the FLC locus in vernalized plants, resulting in the upregulation of FLC in the whole plant, including the vasculature and meristem, where FLC represses floral induction genes. We also showed that a 2-week treatment with DVR01 reverted plants with a vernalized status back to a fully non-vernalized status. Collectively, this study provides a novel structure of DVR01, which modulates devernalization via demethylation of H3K27me3 in the FLC locus.

5.
J Plant Physiol ; 254: 153272, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32980639

ABSTRACT

Root chicory (Cichorium intybus var. sativum) is a biennial plant that requires vernalization for flowering initiation. However, we previously showed that heat can induce root chicory flowering independently of vernalization. To deepen our understanding of the temperature control of flowering in this species, we investigated the impact of heat, vernalization and their interaction on flowering induction and reproductive development. Heat increased the flowering percentage of non-vernalized plants by 25% but decreased that of vernalized plants by 65%. After bolting, heat negatively affected inflorescence development, decreasing the proportion of sessile capitula on the floral stem by 40% and the floral stem dry weight by 42% compared to control conditions, although it did not affect the number of flowers per capitulum. Heat also decreased flower fertility: pollen production, pollen viability and stigma receptivity were respectively 25%, 3% and 82% lower in heat-treated plants than in untreated control plants. To investigate the genetic control of flowering by temperature in root chicory, we studied the expression of the FLC-LIKE1 (CiFL1) gene in response to heat; CiFL1 was previously shown to be repressed by vernalization in chicory and to repress flowering when over-expressed in Arabidopsis. Heat treatment increased CiFL1 expression, as well as the percentage of bolting and flowering shoot apices. Heat thus has a dual impact on flowering initiation in root chicory since it appears to both induce flowering and counteract vernalization. However, after floral transition, heat has a primarily negative impact on root chicory reproduction.


Subject(s)
Cichorium intybus/growth & development , Flowers/growth & development , Cichorium intybus/physiology , Cold Temperature , Fertility , Hot Temperature
6.
Plant Signal Behav ; 10(3): e990799, 2015.
Article in English | MEDLINE | ID: mdl-25648822

ABSTRACT

Vernalization establishes a memory of winter that must be maintained for weeks or months in order to promote flowering the following spring. The stability of the vernalized state varies among plant species and depends on the duration of cold exposure. In Arabidopsis thaliana, winter leads to epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC) and the duration of cold is measured through the dynamics of chromatin modifications during and after cold. The growing conditions encountered post-vernalization are thus critical for the maintenance of the vernalized state. We reported that high temperature leads to devernalization and, consistently, to FLC reactivation in Arabidopsis seedlings. Here we show that the repressive epigenetic mark H3K27me3 decreases at the FLC locus when vernalized seedlings are grown at 30°C, unless they were first exposed to a stabilizing period at 20°C. Ambient temperature thus controls the epigenetic memory of winter.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epigenesis, Genetic , Flowers/growth & development , Gene Expression Regulation, Plant , Hot Temperature , MADS Domain Proteins/genetics , Seasons , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cold Temperature , Genes, Plant , MADS Domain Proteins/metabolism
7.
Plant J ; 75(3): 390-402, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23581257

ABSTRACT

Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over-expression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post-vernalization temperature was favorable to flowering and when it de-vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re-activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold-induced down-regulation of a MADS box floral repressor and its re-activation by high temperature thus appear to be conserved features of the vernalization and de-vernalization responses in distant species.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cichorium intybus/physiology , MADS Domain Proteins/genetics , Plant Proteins/genetics , Arabidopsis Proteins/genetics , Cichorium intybus/genetics , Cloning, Molecular , Cold Temperature , Flowers/genetics , Gene Expression Regulation, Plant , MADS Domain Proteins/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Repressor Proteins/genetics , Repressor Proteins/metabolism , Temperature , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL