Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
Add more filters











Publication year range
1.
Small ; : e2407299, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291893

ABSTRACT

Polymer dielectrics are the key materials for pulsed energy storage systems, but their low energy densities greatly restrict the applications in integrated electronic devices. Herein, a unique bumpy granular interlayer consisting of gold nanoparticles (Au NPs) and polymethyksesquioxane (PMSQ) microspheres is introduced into a poly(vinylidene fluoride) (PVDF) film, forming trilayered PVDF-Au/PMSQ-PVDF films. Interestingly, the Au/PMSQ interlayer arouses a dielectric enhancement of 47% and an ultrahigh breakdown strength of 704 MV m-1, which reaches 153% of pure PVDF. It is revealed that the greatly enhanced breakdown strength originated from the Coulomb-blockade effect of Au NPs and the excellent insulating properties of PMSQ microspheres with a special molecular-scale organic-inorganic hybrid structure. Benefiting from the concurrently enhanced dielectric and breakdown performances, an outstanding energy density of 22.42 J cm-3 with an efficiency of 67.1%, which reaches 249% of that of the pure PVDF, is achieved. It is further confirmed that this design strategy is also applicable to linear dielectric polymer polyethyleneimine. The composites exhibit an energy density of 8.91 J cm-3 with a high efficiency of ≈95%. This work offers a novel and efficient strategy for concurrently enhancing the dielectric and breakdown performances of polymers toward pulsed power applications.

2.
ACS Appl Mater Interfaces ; 16(38): 50614-50629, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39265071

ABSTRACT

Solid-state polymer dielectrics offer an exceptional dielectric breakdown, but require an enhanced energy density to be competitive with alternative electrolyte-based energy storage technologies. Therefore, this research introduces conductive titanium carbonitride (TiCN) nanoparticles in a polyvinylidene fluoride (PVDF) matrix to obtain flexible percolation-based nanodielectrics by ultrasonication-based suspension processing and hot pressing. Well-dispersed TiCN nanoparticles in PVDF were obtained for a wide range of filler volume fractions, and an exceptional peak in the dielectric constant equal to 1130 (0.1 Hz) and 29 (10 kHz) was observed near the percolation threshold (9.2 vol %). The enhanced dielectric constant was ascribed to massive interfacial polarization occurring, resulting from Maxwell-Wagner-Sillars (MWS) polarization and a nanocapacitor mechanism that are dominant at low and high frequencies, respectively. An improvement by 30% in the energy density (0.042 Wh kg-1) compared with the neat PVDF matrix was achieved for the PVDF/TiCN nanodielectrics. The first successful uniform deposition of a nanometer-thin (3 nm) silica (SiO2) shell via the Stöber process on TiCN nanoparticles significantly suppressed the dielectric losses near percolation for the PVDF/TiCN@SiO2 nanodielectrics by more than 1 order of magnitude while offering dielectric constants of 34 (0.1 Hz) and 10 (10 kHz). This study demonstrates the potential of hybrid (core-shell) percolation-based dielectrics for an improved capacitive dielectric performance by an integrated dielectric characterization approach that simultaneously optimizes the dielectric constant, loss tangent, breakdown strength, and energy density.

3.
Adv Mater ; : e2410469, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39328046

ABSTRACT

Low-symmetry structures in van der Waals materials have facilitated the advancement of anisotropic electronic and optoelectronic devices. However, the intrinsic low symmetry structure exhibits a small adjustable anisotropy ratio (1-10), which hinders its further assembly and processing into high-performance devices. Here, a novel 2D anisotropic dielectric, GaInS3 (GIS), which induces isotropic MoS2 to exhibit significant anisotropic optical and electrical responses is demonstrated. With the excellent gate modulation ability of 2D GIS (dielectric constant k ∼12), MoS2 field effect transistor (FET) shows an adjustable conductance ratio from isotropic to anisotropic under dual-gate modulation, up to 106. Theoretical calculations indicate that anisotropy originates from lattice mismatch-induced charge density deformation at the interface. Moreover, the MoS2/GIS photodetector demonstrates high responsivity (≈4750 A W-1) and a large dichroic ratio (≈167). The anisotropic van der Waals dielectric GIS paves the way for the development of 2D transition metal dichalcogenides (TMDCs) in the fields of anisotropic photonics, electronics, and optoelectronics.

4.
Nano Lett ; 24(39): 12307-12314, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39311853

ABSTRACT

We demonstrate distinctive structural colors within a small footprint by using a short chain of nanospheres. Rather than using high-index materials like Si (n ∼ 4), which ensure strong modal confinement, TiO2 is employed. TiO2 has an intermediate index (n ∼ 2), promoting stronger modal coupling between the magnetic dipoles of each particle. This approach enables selective engineering of the magnetic response and yields larger spectral changes compared to that of Si. Despite the lower refractive index, the absence of absorption in TiO2 also produces higher scattering intensities than Si. We develop a quasistatic analytical model that describes the dipolar modal coupling in a trimer and use it to reveal distinct magnetic field strengths in the outer or central particle depending on the polarization of incident light. These results suggest pathways to manipulate the magnetic field in chains of particles and create vibrant structural colors with simple configurations.

5.
Polymers (Basel) ; 16(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125256

ABSTRACT

Organosilicate glass (OSG) films are a critical component in modern electronic devices, with their electrical properties playing a crucial role in device performance. This comprehensive review systematically examines the influence of chemical composition, vacuum ultraviolet (VUV) irradiation, and plasma treatment on the electrical properties of these films. Through an extensive survey of literature and experimental findings, we elucidate the intricate interplay between these factors and the resulting alterations in electrical conductivity, dielectric constant, and breakdown strength of OSG films. Key focus areas include the impact of diverse organic moieties incorporated into the silica matrix, the effects of VUV irradiation on film properties, and the modifications induced by various plasma treatment techniques. Furthermore, the underlying mechanisms governing these phenomena are discussed, shedding light on the complex molecular interactions and structural rearrangements occurring within OSG films under different environmental conditions. It is shown that phonon-assisted electron tunneling between adjacent neutral traps provides a more accurate description of charge transport in OSG low-k materials compared to the previously reported Fowler-Nordheim mechanism. Additionally, the quality of low-k materials significantly influences the behavior of leakage currents. Materials retaining residual porogens or adsorbed water on pore walls show electrical conductivity directly correlated with pore surface area and porosity. Conversely, porogen-free materials, developed by Urbanowicz, exhibit leakage currents that are independent of porosity. This underscores the critical importance of considering internal defects such as oxygen-deficient centers (ODC) or similar entities in understanding the electrical properties of these materials.

6.
Adv Sci (Weinh) ; : e2405730, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207045

ABSTRACT

Polymer dielectrics that perform efficiently under harsh electrification conditions are critical elements of advanced electronic and power systems. However, developing polymer dielectrics capable of reliably withstanding harsh temperatures and electric fields remains a fundamental challenge, requiring a delicate balance in dielectric constant (K), breakdown strength (Eb), and thermal parameters. Here, amide crosslinking networks into cyano polymers is introduced, forming asymmetric dipole pairs with differing dipole moments. This strategy weakens the original electrostatic interactions between dipoles, thereby reducing the dipole orientation barriers of cyano groups, achieving dipole activation while suppressing polarization losses. The resulting styrene-acrylonitrile/crosslinking styrene-maleic anhydride (SAN/CSMA) blends exhibit a K of 4.35 and an Eb of 670 MV m-1 simultaneously at 120 °C, and ultrahigh discharged energy densities (Ue) with 90% efficiency of 8.6 and 7.4 J cm-3 at 120 and 150 °C are achieved, respectively, more than ten times that of the original dielectric at the same conditions. The SAN/CSMA blends show excellent cyclic stability in harsh conditions. Combining the results with SAN/CSMA and ABS (acrylonitrile-butadiene-styrene copolymer)/CSMA blends, it is demonstrated that this novel strategy can meet the demands of high-performing dielectric polymers at elevated temperatures.

7.
ACS Appl Mater Interfaces ; 16(29): 38645-38657, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38981597

ABSTRACT

The present work reports a systematic study of the potential degradation of metals and dielectric thin films in different space environments. The mono- and bilayers selected are made of materials commonly used for the realization of optical components, such as reflective mirrors or building blocks of interferential filters. More than 400 samples were fabricated and irradiated with protons at different energies on ground-based facilities. The fluences were selected as a result of simulations of the doses delivered within a long-term space mission considering different orbits (Sun close, Jovian, and Geostationary orbits). In order to stress the samples at different depths and layer interfaces, experiments were carried out with a range of proton energies within 1 and 10 MeV values. An estimate of a safe maximum fluence has been provided for each type of sample at each energy. The damage mechanism, when present, has been investigated with different optical and structural techniques.

8.
Adv Mater ; 36(35): e2406625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970526

ABSTRACT

Analogous to linear dielectric, amorphous perovskite dielectrics characterized of high breakdown strength and low remanent polarization possess in-depth application in the sea, land, and air fields. Amorphous engineering is a common approach to balance the inverse relationship between polarization and breakdown strength in dielectric ceramic capacitor, however, the low polarization is the major barrier limiting the improvement of energy storage density. To address this concern, the polymorphic localized heterostructure confirmed by high-resolution transmission electron microscope (HR-TEM) and HADDF images is constructed in BaTiO3-Bi(Ni0.5Zr0.5)O3 amorphous/nanocrystalline composite film with SiO2 addition (BT-BNZ-xS, x = 3, 5, 7, 10 mol%). The stability of nanocrystalline region achieved by Si-rich transition region and the enhancive ultra-short-range ordering in the amorphous region synergistically result in large breakdown strength and nonhysteretic polarized response. This polymorphic localized heterostructure optimizes the thermal stability in a wide temperature range and contributes ultrahigh energy storage density of 149.9 J cm-3 with markedly enhanced efficiency of 79.0%. This study provides a universal strategy to design the polarization behavior in other amorphous perovskite-based dielectrics.

9.
ACS Appl Mater Interfaces ; 16(28): 37157-37166, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950350

ABSTRACT

Area-selective atomic layer deposition (AS-ALD), which provides a bottom-up nanofabrication method with atomic-scale precision, has attracted a great deal of attention as a means to alleviate the problems associated with conventional top-down patterning. In this study, we report a methodology for achieving selective deposition of high-k dielectrics by surface modification through vapor-phase functionalization of octadecylphosphonic acid (ODPA) inhibitor molecules accompanied by post-surface treatment. A comparative evaluation of deposition selectivity of ZrO2 thin films deposited with the O2 and O3 reactants was performed on SiO2, TiN, and W substrates, and we confirmed that high enough deposition selectivity over 10 nm can be achieved even after 200 cycles of ALD with the O2 reactant. Subsequently, the electrical properties of ZrO2 films deposited with O2 and O3 reactants were investigated with and without post-deposition treatment. We successfully demonstrated that high-quality ZrO2 thin films with high dielectric constants and stable antiferroelectric properties can be produced by subjecting the films to ozone, which can eliminate carbon impurities within the films. We believe that this work provides a new strategy to achieve highly selective deposition for AS-ALD of dielectric on dielectric (DoD) applications toward upcoming bottom-up nanofabrication.

10.
Nanotechnology ; 35(40)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38981456

ABSTRACT

Low-k SiONC thin films with excellent thermal stabilities were deposited using plasma-assisted molecular layer deposition (PA-MLD) with a tetraisocyanatesilane (Si(NCO)4) precursor, N2plasma, and phloroglucinol (C6H3(OH)3). By adjusting the order of the N2plasma exposure steps within the PA-MLD process, we successfully developed a deposition technique that allows accurate control of thickness at the Ångström level via self-limiting reactions. The thicknesses of the thin films were measured through spectroscopic ellipsometry (SE). By tuning the N2plasma power, we facilitated the formation of -NH2sites for phloroglucinol adsorption, achieving a growth per cycle of 0.18 Å cycle-1with 300 W of N2plasma power. Consequently, the thickness of the films increased linearly with each additional cycle. Moreover, the organic linkers within the film formed stable bonds through surface reactions, resulting in a negligible decrease in thickness of approximately -11% even upon exposure to a high annealing temperature of 600 °C. This observation was confirmed by SE, distinguishing the as-prepared film from previously reported low-k films that fail to maintain their thickness under similar conditions. X-ray photoelectron spectroscopy (XPS) and current-voltage (I-V) and capacitance-voltage (C-V) measurement were conducted to evaluate the composition, insulating properties, and dielectric constant according to the deposition and annealing conditions. XPS results revealed that as the plasma power increased from 200 to 300 W, the C/Si ratio increased from 0.37 to 0.67, decreasing the dielectric constant from 3.46 to 3.12. Furthermore, there was no significant difference in the composition before and after annealing, and the hysteresis decreased from 0.58 to 0.19 V owing to defect healing, while maintaining the leakage current density, breakdown field, and dielectric constant. The low dielectric constant, accurate thickness control, and excellent thermal stability of this MLD SiONC thin film enable its application as an interlayer dielectric in back-end-of-line process.

11.
Nanomaterials (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921932

ABSTRACT

Left-handed materials are known to exhibit exotic properties in controlling electromagnetic fields, with direct applications in negative reflection and refraction, conformal optical mapping, and electromagnetic cloaking. While typical left-handed materials are constructed periodic metal-dielectric structures, the same effect can be obtained in composite guest-host systems with no periodicity or structural order. Such systems are typically described by the effective-medium approach, in which the components of the electric permittivity tensor are determined as a function of individual material properties and doping concentration. In this paper, we extend the discussion on the mixing rules to include left-handed composite systems and highlight the exotic properties arising from the effective-medium approach in this framework in terms of effective values and dispersion properties.

12.
Sensors (Basel) ; 24(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38894295

ABSTRACT

This study presents a comprehensive investigation into the design and optimization of capacitive pressure sensors (CPSs) for their integration into capacitive touch buttons in electronic applications. Using the Finite Element Method (FEM), various geometries of dielectric layers were meticulously modeled and analyzed for their capacitive and sensitivity parameters. The flexible elastomer polydimethylsiloxane (PDMS) is used as a diaphragm, and polyvinylidene fluoride (PVDF) is a flexible material that acts as a dielectric medium. The Design of Experiment (DoE) techniques, aided by statistical analysis, were employed to identify the optimal geometric shapes of the CPS model. From the prediction using the DoE approach, it is observed that the cylindrical-shaped dielectric medium has better sensitivity. Using this optimal configuration, the CPS was further examined across a range of dielectric layer thicknesses to determine the capacitance, stored electrical energy, displacement, and stress levels at uniform pressures ranging from 0 to 200 kPa. Employing a 0.1 mm dielectric layer thickness yields heightened sensitivity and capacitance values, which is consistent with theoretical efforts. At a pressure of 200 kPa, the sensor achieves a maximum capacitance of 33.3 pF, with a total stored electric energy of 15.9 × 10-12 J and 0.468 pF/Pa of sensitivity for 0.1 dielectric thickness. These findings underscore the efficacy of the proposed CPS model for integration into capacitive touch buttons in electronic devices and e-skin applications, thereby offering promising advancements in sensor technology.

13.
ACS Nano ; 18(26): 16343-16358, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899467

ABSTRACT

Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.

14.
Sci Rep ; 14(1): 13051, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844516

ABSTRACT

In this work, the surface of polyvinyl chloride PVC sheet was modified by blending it with sunflower seed oil SSO to obtain PVC sheet/SSO films of ratios 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (v/v)% using the solution casting method. Various techniques were used to characterize the prepared films, besides the use of hemolysis assays and blood clot formation tests. FTIR spectra revealed that there was a good interaction between the PVC sheet and the oil. The dielectric measurement indicated that SSO addition enhanced the dielectric properties of the sheet. The study of dielectric relaxation times confirmed the interaction between SSO and the sheet. DC conductivity increased to 6 × 10-6 S/m, so it could be applied in antistatic applications. Also, SSO addition increased the value of the thermal stability. According to SEM micrographs, the film was roughened at a ratio of 60/40 and smoothed out at 50/50. This behavior was confirmed with roughness and contact angle measurement results, in which the film of ratio 60/40 had the highest value equal to (72.03°) and then decreased at 50/50 to (59.62°). These results were confirmed by XRD measurement as the crystallinity increased at the film ratio of 60/40 and decreased again at 50/50. Also, the ratio of 60/40 demonstrated a large decrease in thrombus weights along with a slight increase in hemolysis, which is within the acceptable range and has a high degree of biocompatibility, so this concentration is recommended to be used in blood bags applications.


Subject(s)
Hemolysis , Polyvinyl Chloride , Sunflower Oil , Sunflower Oil/chemistry , Polyvinyl Chloride/chemistry , Hemolysis/drug effects , Spectroscopy, Fourier Transform Infrared , Humans , Animals , Blood Coagulation/drug effects , Surface Properties , Plant Oils/chemistry
15.
Macromol Rapid Commun ; 45(16): e2400205, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871351

ABSTRACT

Effective recycling of mixed materials requires the separation of the different components without the need for toxic solvents. One approach involves utilizing a water-soluble coating with reversible photo-cross-linkers, making it robust until end of life where it can then be dissolved in water after de-cross-linking. Here, a novel coumarin methacrylate monomer and its nitroxide-mediated copolymerization to create poly((methacrylic acid)-co-(styrene sulfonate)-co-(coumarin methacrylate)) for water-soluble thin films are reported. Under exposure to light, the coumarin functional groups produce reversible [2+2] cycloadditions which cross-link the resulting polymer films, making them no longer water soluble. Characterization of reversible cross-linking behavior is reported through changes in contact angle and in situ rheological characterization. The resulting polymers are successfully integrated into metal-insulator-metal capacitors, demonstrating the potential use for water-soluble reversible photo-cross-linkable dielectric materials for organic electronics.


Subject(s)
Polymers , Solubility , Water , Water/chemistry , Polymers/chemistry , Photochemical Processes , Cross-Linking Reagents/chemistry , Polymerization , Molecular Structure , Methacrylates/chemistry , Coumarins/chemistry
16.
Small Methods ; : e2301755, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716608

ABSTRACT

Nanocomposites combining inorganic nanoparticles with high dielectric constant and polymers with high breakdown strength are promising for the high energy density storage of electricity, and carrier traps can significantly affect the dielectric breakdown process. Nevertheless, there still lacks direct experimental evidence on how nanoparticles affect the trap characteristics of nanocomposites, especially in a spatially resolved manner. Here, a technique is developed to image the trap distribution based on sequential Kelvin probe force microscopy (KPFM) in combination with the isothermal surface potential decay (ISPD) technique, wherein both shallow and deep trap densities and the corresponding energy levels can be mapped with nanoscale resolution. The technique is first validated using the widely-used commercial biaxially oriented polypropylene, yielding consistent results with macroscopic ISPD. The technique is then applied to investigate polyvinylidene fluoride-based nanocomposites filled with barium titanate nanoparticles, revealing higher deep trap density around surface-modified nanoparticles, which correlates well with its increased breakdown strength. This technique thus provides a powerful spatially resolved tool for understanding the microscopic mechanism of dielectric breakdown of nanocomposites.

17.
Adv Mater ; : e2402133, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767177

ABSTRACT

High-temperature flexible polymer dielectrics are critical for high density energy storage and conversion. The need to simultaneously possess a high bandgap, dielectric constant and glass transition temperature forms a substantial design challenge for novel dielectric polymers. Here, by varying halogen substituents of an aromatic pendant hanging off a bicyclic mainchain polymer, a class of high-temperature olefins with adjustable thermal stability are obtained, all with uncompromised large bandgaps. Halogens substitution of the pendant groups at para or ortho position of polyoxanorborneneimides (PONB) imparts it with tunable high glass transition from 220 to 245 °C, while with high breakdown strength of 625-800 MV/m. A high energy density of 7.1 J/cc at 200 °C is achieved with p-POClNB, representing the highest energy density reported among homo-polymers. Molecular dynamic simulations and ultrafast infrared spectroscopy are used to probe the free volume element distribution and chain relaxations pertinent to dielectric thermal properties. An increase in free volume element is observed with the change in the pendant group from fluorine to bromine at the para position; however, smaller free volume element is observed for the same pendant when at the ortho position due to steric hindrance. With the dielectric constant and bandgap remaining stable, properly designing the pendant groups of PONB boosts its thermal stability for high density electrification.

18.
ACS Appl Mater Interfaces ; 16(22): 28980-28990, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768264

ABSTRACT

Freestanding single-crystalline SrTiO3 membranes, as high-κ dielectrics, hold significant promise as the gate dielectric in two-dimensional (2D) flexible electronics. Nevertheless, the mechanical properties of the SrTiO3 membranes, such as elasticity, remain a critical piece of the puzzle to adequately address the viability of their applications in flexible devices. Here, we report statistical analysis on plane-strain effective Young's modulus of large-area SrTiO3 membranes (5 × 5 mm2) over a series of thicknesses (from 6.5 to 32.2 nm), taking advantage of a highly efficient buckling-based method, which reveals its evident thickness-dependent behavior ranging from 46.01 to 227.17 GPa. Based on microscopic and theoretical results, we elucidate these thickness-dependent behaviors and statistical data deviation with a bilayer model, which consists of a surface layer and a bulk-like layer. The analytical results show that the ∼3.1 nm surface layer has a significant elastic softening compared to the bulk-like layer, while the extracted modulus of the bulk-like layer shows a variation of ∼40 GPa. This variation is considered as a combined contribution from oxygen deficiency presenting in SrTiO3 membranes, and the alignment between applied strain and the crystal orientation. Upon comparison of the extracted elastic properties and electrostatic control capability to those of other typical gate dielectrics, the superior performance of single-crystalline SrTiO3 membranes has been revealed in the context of flexible gate dielectrics, indicating the significant potential of their application in high-performance flexible 2D electronics.

19.
Macromol Rapid Commun ; : e2400265, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760951

ABSTRACT

In organic field-effect transistors (OFETs) using disordered organic semiconductors, interface traps that hinder efficient charge transport, stability, and device performance are inevitable. Benchmark poly(9,9-dioctylfuorene-co-bithiophene) (F8T2) liquid-crystalline polymer semiconductor has been extensively investigated for organic electronic devices due to its promising combination of charge transport and light emission properties. This study demonstrates that high-capacitance single-layered ionic polyurethane (PU) dielectrics enable enhanced charge transport in F8T2 OFETs. The ionic PU dielectrics are composed of a mild blending of PU ionogel and PU solution, thereby forming a solid-state film with robust interfacial characteristics with semiconductor layer and gate electrode in OFETs and measuring high capacitance values above 10 µF cm-2 owing to the combined dipole polarization and electric double layer formation. The optimized fabricated ionic PU-gated OFETs exhibit a low-voltage operation at -3 V with a remarkable hole mobility of over 5 cm2 V-1 s-1 (average = 2.50 ± 1.18 cm2 V-1 s-1), which is the highest mobility achieved so far for liquid-crystalline F8T2 OFETs. This device also provides excellent bias-stable characteristics in ambient air, exhibiting a negligible threshold voltage shift of -0.03 V in the transfer curves after extended bias stress, with a reduced trap density.

20.
Small ; 20(37): e2311836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38770997

ABSTRACT

2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.

SELECTION OF CITATIONS
SEARCH DETAIL