Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.134
Filter
1.
Cureus ; 16(8): e65919, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39221382

ABSTRACT

Genetics can influence obesity, and when it affects both parents and children, there is a high risk of developing cardiometabolic diseases. Studies have indicated that family-based treatment (FBT) is a cost-effective and successful option for achieving significant weight changes in both children and parents. While specialized clinics offer FBT, primary care settings, where most pediatric care takes place, may not have the necessary resources or expertise to provide intensive behavioral interventions for childhood obesity. Based on early findings, FBT could potentially have a positive impact on siblings as well, as when treated children and parents experience behavioral changes, it can also have a beneficial effect on their untreated siblings. Parents play a crucial role in shaping their children's behavior, and siblings often have a stronger influence on them than their parents or friends. For our meta-analysis, we utilized three graphical models created using RevMan 5.4, based on the selected articles. To develop our systematic review, we thoroughly analyzed a total of 10 articles. The subgroup analysis within these studies assessed the effectiveness of FBT for overweight children, revealing no significant differences between groups (p=0.77). This suggests that based on their BMI, FBT may not have a statistically significant impact on weight loss in overweight children. However, each study reviewed showed statistical significance (p<0.05). The findings of our meta-analysis underscore the need for more robust evidence and larger randomized controlled trials (RCTs) to enhance our understanding of FBT's benefits in pediatric obesity. This will be crucial for reducing the rising prevalence of obesity and maintaining lower incidence rates.

2.
JMIR Res Protoc ; 13: e59227, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207833

ABSTRACT

BACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.


Subject(s)
Bread , Cross-Over Studies , Dietary Fiber , Food, Fortified , Gastrointestinal Microbiome , Oryza , Humans , Oryza/chemistry , Dietary Fiber/administration & dosage , Dietary Fiber/metabolism , Male , Female , Gastrointestinal Microbiome/drug effects , Adult , Double-Blind Method , Middle Aged , Feces/microbiology , Feces/chemistry
3.
Food Chem ; 460(Pt 3): 140784, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126952

ABSTRACT

The low-grade matcha is rich in insoluble dietary fiber. Trichoderma viride was used to increase the soluble dietary fiber to improve its functional properties. The soluble dietary fiber content increased from 6.74% to 15.24%. Pectin, hemicellulose, maltose, d-xylose, and glucose contents increased by 63.35% and 11.54%, 2.18, 0.11, and 7.04 mg/g, respectively. Trichoderma viride fermentation disrupted the dense structure of insoluble dietary fiber, resulting in a honeycomb structure and improving crystallinity by 22.75%. These structural changes led to an improved cation exchange capacity from 1.69 to 4.22 mmol/g, an increase in the inhibitory effect of α-amylase from 47.38% to 72.04%, and a 2.13-fold in the ferrous ion scavenging ability, and the IC50 values of superoxide anion was reduced from 7.00 to 1.54 mg/mL, respectively. Therefore, Trichoderma viride fermentation is an excellent method for improving the quality of dietary fiber in matcha processing by-products.

4.
Food Res Int ; 193: 114847, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160052

ABSTRACT

Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF. The highest extraction yield was observed with alkali enzyme concentration (50 µL/g) treatment, resulting in 2 % SDF and 59.5 % IDF at 24 h of extraction. The results indicate that cellulase-AC enzyme aids in the hydrolysis of higher polysaccharides, leading to structural alterations in DRB and an increase in DF yield. Furthermore, the disruption of intra-molecular hydrogen bonding between oligosaccharides and the starch matrix helps to increase in DF yield, was also confirmed through FTIR and SEM. The extracted DF soluble and insoluble was then used to develop rice porridge. Sensory evaluation using fuzzy logic analysis reported the highest scores for samples containing 0.5 % insoluble DF and 1.25 % soluble DF.


Subject(s)
Alkalies , Dietary Fiber , Oryza , Oryza/chemistry , Dietary Fiber/analysis , Alkalies/chemistry , Solubility , Hydrolysis , Spectroscopy, Fourier Transform Infrared , Cellulase/metabolism , Cellulase/chemistry , Food Handling/methods , Crystallization
5.
Gut Microbes ; 16(1): 2387796, 2024.
Article in English | MEDLINE | ID: mdl-39163556

ABSTRACT

Given the worldwide epidemic of overweight and obesity among children, evidence-based dietary recommendations are fundamentally important for obesity prevention. Although the significance of the human gut microbiome in shaping the physiological effects of diet and obesity has been widely recognized, nutritional therapeutics for the mitigation of pediatric obesity globally are only just starting to leverage advancements in the nutritional microbiology field. In this review, we extracted data from PubMed, EMBASE, Scopus, Web of Science, Google Scholar, CNKI, Cochrane Library and Wiley online library that focuses on the characterization of gut microbiota (including bacteria, fungi, viruses, and archaea) in children with obesity. We further review host-microbe interactions as mechanisms mediating the physiological effects of dietary fibers and how fibers alter the gut microbiota in children with obesity. Contemporary nutritional recommendations for the prevention of pediatric obesity are also discussed from a gut microbiological perspective. Finally, we propose an experimental framework for integrating gut microbiota into nutritional interventions for children with obesity and provide recommendations for the design of future studies on precision nutrition for pediatric obesity.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Pediatric Obesity , Humans , Dietary Fiber/administration & dosage , Pediatric Obesity/prevention & control , Pediatric Obesity/microbiology , Child , Bacteria/classification , Bacteria/metabolism , Host Microbial Interactions , Diet
7.
Food Res Int ; 192: 114747, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147484

ABSTRACT

Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.


Subject(s)
Antioxidants , Coix , Dietary Fiber , Digestion , Fatty Acids, Volatile , Fermentation , Gastrointestinal Microbiome , Steam , Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , Antioxidants/metabolism , Antioxidants/analysis , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Coix/chemistry , Humans , Propionates/metabolism , Food Handling/methods
8.
Food Res Int ; 192: 114761, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147543

ABSTRACT

This study aimed to investigate the ameliorating effects of peach blossom soluble dietary fiber (PBSDF) and polyphenol (PBP) combinations on loperamide (Lop)-induced constipation in mice, together with the possible mechanism of action. The results demonstrated that the combined use of PBSDF and PBP could synergistically accelerate the gastrointestinal transit rate and gastric emptying rate, shorten first red fecal defecation time, accelerate the frequency of defecation, regulate the abnormal secretion of gastrointestinal neurotransmitters and pro-inflammatory cytokines, and down-regulate the expressions of AQP3 and AQP8. Western blotting and RT-qPCR analysis confirmed that PBSDF + PBP up-regulated the protein and mRNA expressions of SCF and C-kit in SCF/C-kit signaling pathway, and down-regulated pro-inflammatory mediator expressions in NF-κB signaling pathway. 16S rRNA sequencing showed that the diversity of gut microbiota and the relative abundance of specific strains, including Akkermansia, Bacteroides, Ruminococcus, Lachnospiraceae_NK4A136_group, and Turicibacter, rehabilitated after PBSDF + PBP intervention. These findings suggested that the combination of a certain dose of PBSDF and PBP had a synergistic effect on attenuating Lop-induced constipation, and the synergistic mechanism in improving constipation might associated with the regulating NF-κB and SCF/C-kit signaling pathway, and modulating the specific gut strains on constipation-related systemic types. The present study provided a novel strategy via dietary fiber and polyphenol interactions for the treatment of constipation.


Subject(s)
Constipation , Dietary Fiber , Gastrointestinal Microbiome , Loperamide , NF-kappa B , Polyphenols , Proto-Oncogene Proteins c-kit , Prunus persica , Signal Transduction , Stem Cell Factor , Animals , Constipation/chemically induced , Constipation/drug therapy , Gastrointestinal Microbiome/drug effects , Mice , Polyphenols/pharmacology , NF-kappa B/metabolism , Stem Cell Factor/metabolism , Male , Prunus persica/chemistry , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/genetics , Aquaporin 3/metabolism , Aquaporin 3/genetics , Gastrointestinal Transit/drug effects , Disease Models, Animal
9.
J Food Sci ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150747

ABSTRACT

Bamboo shoot is a healthy food rich in dietary fiber (DF). However, its highly insoluble DF and fibrous texture limit its application in industrially processed foods. To achieve industrial processing of bamboo shoot, cellulase was used to improve the physical characteristics of bamboo shoot DF in this study. After enzymatic hydrolysis, the content of soluble DF (SDF) of bamboo shoot increased by 99.28% (from 5.53% to 11.02%) significantly (p < 0.01). At the same time, the effect of enzymatic-modified bamboo SDF (EMBSDF) on streptozotocin-induced type 2 diabetes rats was explored. Results demonstrated that the high dose of EMBSDF (312.8 mg/kg) treated rats showed significant improvements in terms of glucose tolerance and insulin sensitivity (p < 0.01) compared with the diabetes rats. Meantime, it was observed that the levels of glucagon-like peptide-1, adiponectin and interleukin-4 of high dose of EMBSDF compared with diabetes rats were increased (p < 0.01) by 57.79%, 159.13%, and 6.17%, respectively. The tumor necrosis factor-α, C-reactive protein, and leptin levels were decreased (p < 0.01) by 62.89%, 31.53%, and 7.84%, respectively. Furthermore, apparent kidney and pancreas histology improvements were found in high-dose and mid-dose EMBSDF-treated diabetes rats. These results indicated that the modified DF significantly improved diabetes.

10.
Front Psychiatry ; 15: 1414291, 2024.
Article in English | MEDLINE | ID: mdl-39171074

ABSTRACT

Background: Perinatal depression and anxiety (PDA) is prevalent in new and expectant mothers, affecting millions of women worldwide. Those with a history of mood and anxiety disorders are at the greatest risk of experiencing PDA in a subsequent pregnancy. Current safety concerns with pharmacological treatments have led to a greater need for adjunctive treatment options for PDA. Changes in the composition of the microbiome have been associated with various diseases during pregnancy, and these changes are thought to play some role in perinatal mood disorders. While the relationship between PDA and the microbiome has not been explored, evidence suggests that nutritional interventions with fiber, fish oils, and probiotics may play a favorable role in neuropsychiatric outcomes during and after pregnancy. The primary objective of the present study is to assess the feasibility and acceptability of a combination of nonpharmacological interventions to maintain stability in pregnant women who have a history of depression and/or anxiety. This study will also aim to understand ease of recruitment and protocol adherence in this cohort. Methods: This is a single-centered, partially randomized, placebo-controlled, double-blind feasibility trial. One hundred pregnant women with a history of depression and/or anxiety/PDA will be recruited and randomized into one of four arms, which could include the following: receiving a daily dose of both investigational products and dietary counseling on increasing dietary fiber, receiving a daily dose of both investigational drugs only, receiving fish oil investigational product and placebo, and a control arm with no intervention. The study involves six study visits, all of which can be conducted virtually every 3 months from the time of enrollment. At all study visits, information on diet, mental health, physical activity, and sleep quality will be collected. Additionally, all participants will provide a stool sample at each visit. Discussion: It is anticipated that pregnant women with a history of depression and anxiety will be particularly interested in partaking in this trial, resulting in favorable recruitment rates. Given the positive findings of omega-3 fatty acids (O3FAs) and probiotic supplements on mental health symptoms in nonpregnant adults, we expect a similar trend in PDA symptoms, with a low likelihood of adverse events. This study will build the foundation for larger powered studies to further contribute evidence for the efficacy of this potential preventative treatment option. Trial registration: This trial was registered at ClinicalTrials/gov on October 6, 2023; NCT06074250. Trial Sponsor: The Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON M2K 1E2, 416-498-1255.

11.
Int J Biol Macromol ; 279(Pt 1): 135115, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197607

ABSTRACT

Low-moisture extrusion (LME) can be used to improve the utilization of dietary fiber-rich Lentinula edodes stems (LES). The incorporation of dietary fiber can affect heat-induced interactions of starch molecules, which are critical for modifying starch characteristics via LME. In this work, a blend of LES and maize starch was extruded into a product at low moisture (30 %, w/v). The structure, physicochemical properties, and in vitro digestibility of extruded maize starches were investigated at different LES levels. The results showed that low levels (<7 %) of LES increased the crystallinity of LME-produced starch, while high levels (>7 %) did not. Because of the LES's soluble to insoluble dietary fiber ratios, the increased crystallinity of LES-added starch led to greater molecular ordering and the formation of an elastic gel after LME. At a suitable LES level (~3 %), highly crystallized starches were resistant to enzymolysis and had a high proportion of resistant starch. The obtained findings would contribute to a better understanding of how dietary fiber-rich LES affects starch extrusion and provide an alternative use for boosting the value of LES by-products.

12.
Microorganisms ; 12(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39203515

ABSTRACT

Dietary fiber (DF) is an important nutrient component in pig's diet that remarkably influences their growth and slaughter performance. The ability of pigs to digest DF depends on the microbial composition of the intestinal tract, particularly in the hindgut. However, studies on how DF alters the growth and slaughter performance of pigs by shaping the gut microbial composition and metabolites are still limited. Therefore, this study aimed to investigate the effects of DF on microbial composition, functions, and metabolites, ultimately altering host growth and slaughter performance using Durco × Bamei crossbred pigs supplemented with 0%, 10%, 17%, and 24% broad bean silage in the basic diet. We found that the final weight, average daily gain, fat, and lean meat weight significantly decreased with increasing DF. Pigs with the lowest slaughter rate and fat weight were observed in the 24% fiber-supplemented group. Gut microbial communities with the highest alpha diversity were formed in the 17% fiber group. The relative abundance of fiber-degrading bacteria, bile acid, and succinate-producing bacteria, including Prevotella sp., Bacteroides sp., Ruminococcus sp., and Parabacteroides sp., and functional pathways, including the butanoate metabolism and the tricarboxylic acid [TCA] cycle, significantly increased in the high-fiber groups. The concentrations of several bile acids significantly decreased in the fiber-supplemented groups, whereas the concentrations of succinate and long-chain fatty acids increased. Our results indicate that a high-fiber diet may alter the growth and slaughter performance of Durco × Bamei crossbred pigs by modulating the composition of Prevotella sp., Bacteroides sp., Ruminococcus sp., Parabacteroides sp., and metabolite pathways of bile acids and succinate.

13.
Int J Biol Macromol ; 279(Pt 1): 135034, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182873

ABSTRACT

Repeated freeze-thaw (FT) cycles damage the quality of frozen starch-based foods and accelerate the digestion rate of starch. This study investigated how potato soluble dietary fiber (PSDF) affects the physicochemical characteristics and digestibility of potato starch (PS) after repeated FT cycles. Results indicated that repeated FT cycles of potato starch resulted in the enlargement of gel pores, an increase in hardness (from 322.5 g to 579.5 g), and a decrease in gel porosity, leading to reduced water-holding capacity (from 94.2 % to 85.4 %). However, the addition of PSDF stabilized the 3D structure of the PS/PSDF gel, with minimal fluctuations in hardness (413.0-447.5 g) and water-holding capacity (94.4-93.6 %). Meanwhile, PSDF enhanced intramolecular hydrogen bonding within starch molecules and promoted molecular interactions, increasing the PS/PSDF gel's helix structure; therefore, PSDF effectively addressed the increase in rapidly digestible starch caused by repeated FT cycles. Furthermore, PSDF might attach to the surface of starch particles, so limiting starch granule expansion and decreasing the peak viscosity increase caused by repeated FT cycles. The findings suggest that PSDF could be an effective component for improving the quality of potato starch-based frozen food.

14.
Food Sci Biotechnol ; 33(9): 2201-2211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39130660

ABSTRACT

Western diet is known to contribute to intestinal dysbiosis and the progression of inflammation. Although the Turkish diet has different macronutrient contents, the intestinal inflammatory disease incidences in Türkiye are comparable to Western countries. Thus, we hypothesized that high carbohydrate diets also contribute to inflammation of the colon. We compared diets with different macronutrient compositions and investigated their effects on colonic microbiota, cytokine, histology, and tight junction protein levels. High carbohydrate diet caused the lowest microbial diversity and is accompanied by the highest expression of interleukin-1ß and claudin-1. A low carbohydrate diet with zero fiber resulted in the lowest inflammatory markers as well as the lowest occludin and claudin levels. Overall, our results indicate that carbohydrate and fiber contents of the diets are important contributors to colon health.

15.
Int J Biol Macromol ; 278(Pt 3): 134186, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173790

ABSTRACT

Diabetic cognitive dysfunction (DCD) refers to cognitive impairment in individuals with diabetes, which is one of the most important comorbidities and complications. Preliminary evidence suggests that consuming sufficient dietary fiber could have benefits for both diabetes and cognitive function. However, the effect and underlying mechanism of dietary fiber on DCD remain unclear. We conducted a cross-sectional analysis using data from NHANES involving 2072 diabetics and indicated a significant positive dose-response relationship between the dietary fiber intake and cognitive performance in diabetics. Furthermore, we observed disrupted cognitive function and neuronal morphology in high-fat diet induced DCD mice, both of which were effectively restored by fucoidan supplementation through alleviating DNA epigenetic metabolic disorders. Moreover, fucoidan supplementation enhanced the levels of short-chain fatty acids (SCFAs) in the cecum of diabetic mice. These SCFAs enhanced TET2 protein stability by activating phosphorylated AMPK and improved TETs activity by reducing the ratio of (succinic acid + fumaric acid)/ α-ketoglutaric acid, subsequently enhancing TET2 function. The positive correlation between dietary fiber intake and cognitive function in diabetics was supported by human and animal studies alike. Importantly, fucoidan can prevent the occurrence of DCD by promoting TET2-mediated active DNA demethylation in the cerebral cortex of diabetic mice.

16.
Int J Biol Macromol ; 278(Pt 4): 134979, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181370

ABSTRACT

Low-salt stress germination is an effective way to improve the nutritional composition of food crops. A novel soluble dietary fiber (MS-SDF) was isolated from low-salt stress mung bean sprouts that were exposed to low-salt stress using anion exchange and gel permeation techniques. Structural analysis revealed that MS-SDF was a homogeneous heteropolysaccharide with an average molecular weight of 164.997 KDa. It featured a loose structure and contained the characteristic functional groups typical of polysaccharides. MS-SDF was composed of arabinose, galactose, glucose, and mannose with a molar ratio of 3.95:3.86:82.69:9.02. The structure was mainly composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,6)-α-D-Glcp-(1→ as the main chain. Branched at O-3 position with single ß-D-Manp-(1→ as major the side chain. Furthermore, in vitro hypoglycemic assays indicate that MS-SDF exhibits α-glucosidase inhibitory activity, significantly enhancing glucose uptake, glycogen synthesis, and pyruvate kinase activity in insulin-resistant HepG2 cells. Overall, MS-SDF could be used as a promising source of functional hypoglycemic foods.

17.
Food Chem X ; 23: 101635, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39130724

ABSTRACT

This research examined the impact of defatted coconut flour (DCF)-based oleogels on the quality of surimi. Microscopic analysis indicated that the dietary fiber present in DCF could act as the main structure of the oleogels network. The formation of the oleogels network primarily relies on the tensile intramolecular or intermolecular hydrogen bonds between DCF and corn oil. The oleogels displayed oil binding capacity of up to 96.95% and exhibited favorable mechanical and rheological properties. Efforts were undertaken to integrate the acquired oleogels into silver carp surimi to create oil-fortified surimi products. Adding oleogels significantly enhanced the gel strength, texture, and water-holding capacity of surimi compared to adding corn oil. Especially, oleogels containing 5.0 % (w/v) DCF concentration elevated the lipid content in the surimi and preserved the gel and texture properties. Therefore, incorporating oleogels in surimi presents a potential solution for enhancing the nutritional content of surimi products.

18.
Foods ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39200414

ABSTRACT

Bread, a staple food consumed worldwide, plays a pivotal role in nutrition. Nevertheless, it is to be underlined that white bread is classified as a high glycemic index food, and its frequent consumption can lead to rapid increases in blood glucose, potentially causing metabolic stress and contributing to insulin resistance and type 2 diabetes. So, there is a growing interest in bread formulations with ingredients that can lower its GI. With this view, bread was formulated, substituting wheat with chickpea flour, red chicory powder, and three distinct types of resistant starch. The results showed the different resistant starches' impacts on the glycemic index reduction. Specifically, chemically modified tapioca RS IV produced a bread formulation with a low predicted glycemic index (pGI < 55). Retrograded starch from tapioca (RS III) allows the bread to reach a pGI value of 55, the upper value for classifying a food as low pGI. The retrograded starch from corn (RS III) allows a decrease in the bread's glycemic index, but the product is still classified as 'high pGI' (>70). Moreover, the addition of by-products rich in polyphenols contributes to a lowering of the pGI. Concerning the technological parameters, the outcome revealed an increase in the moisture content across all the newly formulated samples compared to the control. At the same time, the volume and specific volume showed a decrease. The newly formulated samples exhibited a higher baking loss, particularly when incorporating resistant starch, which increased the hardness and chewiness with decreased cohesiveness. In conclusion, incorporating chickpea flour, red chicory powder, and tapioca-resistant starch (RS III and IV) offers a promising strategy for producing high-fiber bread with a low glycemic index, catering to health-conscious consumers.

19.
Foods ; 13(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39200472

ABSTRACT

Cocoa bean shells (CBSs) are a byproduct of the chocolate production process, representing the external layer of the cocoa bean. CBSs exhibit many interesting chemical and nutritional characteristics resulting in a very rich content of dietary fiber (DF) and antioxidant compounds such as phenolic acids and flavan-3-ols. The DF fraction of CBSs is notably rich in soluble dietary fibers (SDFs), which may be associated with fermentability and prebiotic properties. The objective of this study was the valorization of CBSs through enzymatic treatments, thereby increasing the solubility of DF and potentially augmenting fermentability. CBSs were treated both raw and defatted. Three sets of carbohydrases were used in order to impact the dietary fiber profile. Cellulase, xylanase, pectinase and their combinations were used to perform enzymatic treatments. The application of cellulase, xylanase and a combination of both enzymes proved effective in achieving a high SDF destructuring of the insoluble dietary fiber (IDF) fraction in both defatted and raw CBSs. Notably, the SDF/IDF ratio was significantly elevated in the enzymatically hydrolyzed samples (1.13-1.33) compared to the untreated CBSs (0.33). Furthermore, the various treatments did not affect the antioxidant activity or the content of the main bioactive compounds. These results provide a foundation for new opportunities in the biovalorization of CBSs through green techniques for a range of potential industrial applications in the food and nutraceutical sectors.

20.
Nutr Res Pract ; 18(4): 534-543, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109195

ABSTRACT

BACKGROUND/OBJECTIVES: Studies on the impact of dietary fiber intake on kidney stones are few, and their results were controversial. This study aimed to explore the association between dietary fiber intake and kidney stones in the nationally representative population of the USA. SUBJECTS/METHODS: This cross-sectional research included 8,588 participants from the National Health and Nutrition Examination Survey, 2011 to 2018. Information regarding dietary fiber intake was obtained from a 24-h recall survey. Participants were categorized into different dietary fiber intake tertiles according to the average of 2 days of dietary recall data. The outcome was self-reported kidney stones. After adjusting for the traditional risk factors, a multivariate logistic regression model was used to examine the association between dietary fiber intake and kidney stones. RESULTS: Eight hundred seventy-two participants had kidney stones. The weighted prevalence (SE) of kidney stones in the lowest tertile, medium tertile, and highest tertile of dietary fiber intake was 11.8% (0.8%), 10.3% (0.8%), and 9.1% (0.8%), respectively. After adjusting for age, sex, race and ethnicity, education level, smoking status, alcohol consumption, physical activity, body mass index, hypertension, diabetes, dyslipidemia, daily water intake, chronic kidney disease stage 3-5, and total energy intake, participants with the highest tertile of fiber intake had a significantly lower risk of kidney stones (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.48-0.95) compared to those in the lowest tertile. Every 5 g/day increment in dietary fiber intake was associated with a significant decrease in risk of kidney stones (OR, 0.90; 95% CI, 0.83-0.98). CONCLUSION: An increase in dietary fiber intake was associated with a lower risk of kidney stones, suggesting adults should be encouraged to maintain an adequate dietary fiber intake to prevent the development of kidney stones. Our results provide evidence to formulate nutrition management strategies for the prevention of kidney stones.

SELECTION OF CITATIONS
SEARCH DETAIL